A Bayesian Graphical Model for Integrative Analysis of TCGA Data.

Yanxun Xu, Jie Zhang, Yuan Yuan, Riten Mitra, Peter Müller, Yuan Ji
{"title":"A Bayesian Graphical Model for Integrative Analysis of TCGA Data.","authors":"Yanxun Xu, Jie Zhang, Yuan Yuan, Riten Mitra, Peter Müller, Yuan Ji","doi":"10.1109/GENSIPS.2012.6507747","DOIUrl":null,"url":null,"abstract":"<p><p>We integrate three TCGA data sets including measurements on matched DNA copy numbers (C), DNA methylation (M), and mRNA expression (E) over 500+ ovarian cancer samples. The integrative analysis is based on a Bayesian graphical model treating the three types of measurements as three vertices in a network. The graph is used as a convenient way to parameterize and display the dependence structure. Edges connecting vertices infer specific types of regulatory relationships. For example, an edge between M and E and a lack of edge between C and E implies methylation-controlled transcription, which is robust to copy number changes. In other words, the mRNA expression is sensitive to methylational variation but not copy number variation. We apply the graphical model to each of the genes in the TCGA data independently and provide a comprehensive list of inferred profiles. Examples are provided based on simulated data as well.</p>","PeriodicalId":73289,"journal":{"name":"IEEE International Workshop on Genomic Signal Processing and Statistics : [proceedings]. IEEE International Workshop on Genomic Signal Processing and Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387199/pdf/nihms673684.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Genomic Signal Processing and Statistics : [proceedings]. IEEE International Workshop on Genomic Signal Processing and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSIPS.2012.6507747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We integrate three TCGA data sets including measurements on matched DNA copy numbers (C), DNA methylation (M), and mRNA expression (E) over 500+ ovarian cancer samples. The integrative analysis is based on a Bayesian graphical model treating the three types of measurements as three vertices in a network. The graph is used as a convenient way to parameterize and display the dependence structure. Edges connecting vertices infer specific types of regulatory relationships. For example, an edge between M and E and a lack of edge between C and E implies methylation-controlled transcription, which is robust to copy number changes. In other words, the mRNA expression is sensitive to methylational variation but not copy number variation. We apply the graphical model to each of the genes in the TCGA data independently and provide a comprehensive list of inferred profiles. Examples are provided based on simulated data as well.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 TCGA 数据综合分析的贝叶斯图形模型。
我们整合了三个 TCGA 数据集,包括 500 多个卵巢癌样本中匹配的 DNA 拷贝数(C)、DNA 甲基化(M)和 mRNA 表达(E)的测量数据。整合分析基于贝叶斯图模型,将三种测量结果视为网络中的三个顶点。图形是参数化和显示依赖结构的便捷方法。连接顶点的边推断出特定类型的调控关系。例如,M 和 E 之间有边,而 C 和 E 之间没有边,这意味着甲基化控制的转录对拷贝数变化具有稳健性。换句话说,mRNA 表达对甲基化变化敏感,而对拷贝数变化不敏感。我们将图形模型独立应用于 TCGA 数据中的每一个基因,并提供了一份推断出的概况综合列表。我们还提供了基于模拟数据的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrative Sparse Bayesian Analysis of High-dimensional Multi-platform Genomic Data in Glioblastoma. Integrative Analysis of Multi-modal Correlated Imaging-Genomics Data in Glioblastoma. An Approach for Assessing RNA-seq Quantification Algorithms in Replication Studies. A Bayesian Graphical Model for Integrative Analysis of TCGA Data. Sparse Bayesian Graphical Models for RPPA Time Course Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1