An Approach for Assessing RNA-seq Quantification Algorithms in Replication Studies.

Po-Yen Wu, John H Phan, May D Wang
{"title":"An Approach for Assessing RNA-seq Quantification Algorithms in Replication Studies.","authors":"Po-Yen Wu, John H Phan, May D Wang","doi":"10.1109/GENSIPS.2013.6735918","DOIUrl":null,"url":null,"abstract":"<p><p>One way to gain a more comprehensive picture of the complex function of a cell is to study the transcriptome. A promising technology for studying the transcriptome is RNA sequencing, an application of which is to quantify elements in the transcriptome and to link quantitative observations to biology. Although numerous quantification algorithms are publicly available, no method of systematically assessing these algorithms has been developed. To meet the need for such an assessment, we present an approach that includes (1) simulated and real datasets, (2) three alignment strategies, and (3) six quantification algorithms. Examining the normalized root-mean-square error, the percentage error of the coefficient of variation, and the distribution of the coefficient of variation, we found that quantification algorithms with the input of sequence alignment reported in the transcriptomic coordinate usually performed better in terms of the multiple metrics proposed in this study.</p>","PeriodicalId":73289,"journal":{"name":"IEEE International Workshop on Genomic Signal Processing and Statistics : [proceedings]. IEEE International Workshop on Genomic Signal Processing and Statistics","volume":" ","pages":"15-18"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981182/pdf/nihms806776.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Genomic Signal Processing and Statistics : [proceedings]. IEEE International Workshop on Genomic Signal Processing and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSIPS.2013.6735918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One way to gain a more comprehensive picture of the complex function of a cell is to study the transcriptome. A promising technology for studying the transcriptome is RNA sequencing, an application of which is to quantify elements in the transcriptome and to link quantitative observations to biology. Although numerous quantification algorithms are publicly available, no method of systematically assessing these algorithms has been developed. To meet the need for such an assessment, we present an approach that includes (1) simulated and real datasets, (2) three alignment strategies, and (3) six quantification algorithms. Examining the normalized root-mean-square error, the percentage error of the coefficient of variation, and the distribution of the coefficient of variation, we found that quantification algorithms with the input of sequence alignment reported in the transcriptomic coordinate usually performed better in terms of the multiple metrics proposed in this study.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在复制研究中评估 RNA-seq 定量算法的方法。
要更全面地了解细胞的复杂功能,方法之一是研究转录组。研究转录组的一项有前途的技术是 RNA 测序,其应用之一是量化转录组中的元素,并将定量观测与生物学联系起来。虽然有许多量化算法可以公开获得,但还没有开发出系统评估这些算法的方法。为了满足这种评估需要,我们提出了一种方法,其中包括:(1)模拟数据集和真实数据集;(2)三种配准策略;(3)六种量化算法。通过考察归一化均方根误差、变异系数百分比误差和变异系数分布,我们发现以转录组坐标中报告的序列比对为输入的量化算法通常在本研究提出的多个指标方面表现较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrative Sparse Bayesian Analysis of High-dimensional Multi-platform Genomic Data in Glioblastoma. Integrative Analysis of Multi-modal Correlated Imaging-Genomics Data in Glioblastoma. An Approach for Assessing RNA-seq Quantification Algorithms in Replication Studies. A Bayesian Graphical Model for Integrative Analysis of TCGA Data. Sparse Bayesian Graphical Models for RPPA Time Course Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1