James Lara, John E Tavis, Maureen J Donlin, William M Lee, He-Jun Yuan, Brian L Pearlman, Gilberto Vaughan, Joseph C Forbi, Guo-Liang Xia, Yury E Khudyakov
{"title":"Coordinated evolution among hepatitis C virus genomic sites is coupled to host factors and resistance to interferon.","authors":"James Lara, John E Tavis, Maureen J Donlin, William M Lee, He-Jun Yuan, Brian L Pearlman, Gilberto Vaughan, Joseph C Forbi, Guo-Liang Xia, Yury E Khudyakov","doi":"10.3233/ISB-2012-0456","DOIUrl":null,"url":null,"abstract":"<p><p>Machine-learning methods in the form of Bayesian networks (BN), linear projection (LP) and self-organizing tree (SOT) models were used to explore association among polymorphic sites within the HVR1 and NS5a regions of the HCV genome, host demographic factors (ethnicity, gender and age) and response to the combined interferon (IFN) and ribavirin (RBV) therapy. The BN models predicted therapy outcomes, gender and ethnicity with accuracy of 90%, 90% and 88.9%, respectively. The LP and SOT models strongly confirmed associations of the HVR1 and NS5A structures with response to therapy and demographic host factors identified by BN. The data indicate host specificity of HCV evolution and suggest the application of these models to predict outcomes of IFN/RBV therapy.</p>","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":"11 5-6","pages":"213-24"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/ISB-2012-0456","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ISB-2012-0456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 16
Abstract
Machine-learning methods in the form of Bayesian networks (BN), linear projection (LP) and self-organizing tree (SOT) models were used to explore association among polymorphic sites within the HVR1 and NS5a regions of the HCV genome, host demographic factors (ethnicity, gender and age) and response to the combined interferon (IFN) and ribavirin (RBV) therapy. The BN models predicted therapy outcomes, gender and ethnicity with accuracy of 90%, 90% and 88.9%, respectively. The LP and SOT models strongly confirmed associations of the HVR1 and NS5A structures with response to therapy and demographic host factors identified by BN. The data indicate host specificity of HCV evolution and suggest the application of these models to predict outcomes of IFN/RBV therapy.
In Silico BiologyComputer Science-Computational Theory and Mathematics
CiteScore
2.20
自引率
0.00%
发文量
1
期刊介绍:
The considerable "algorithmic complexity" of biological systems requires a huge amount of detailed information for their complete description. Although far from being complete, the overwhelming quantity of small pieces of information gathered for all kind of biological systems at the molecular and cellular level requires computational tools to be adequately stored and interpreted. Interpretation of data means to abstract them as much as allowed to provide a systematic, an integrative view of biology. Most of the presently available scientific journals focus either on accumulating more data from elaborate experimental approaches, or on presenting new algorithms for the interpretation of these data. Both approaches are meritorious.