Bacterial cell-envelope glycoconjugates.

Paul Messner, Christina Schäffer, Paul Kosma
{"title":"Bacterial cell-envelope glycoconjugates.","authors":"Paul Messner,&nbsp;Christina Schäffer,&nbsp;Paul Kosma","doi":"10.1016/B978-0-12-408093-5.00006-X","DOIUrl":null,"url":null,"abstract":"<p><p>Prokaryotic glycosylation fulfills an important role in maintaining and protecting the structural integrity and function of the bacterial cell wall, as well as serving as a flexible adaption mechanism to evade environmental and host-induced pressure. The scope of bacterial and archaeal protein glycosylation has considerably expanded over the past decade(s), with numerous examples covering the glycosylation of flagella, pili, glycosylated enzymes, as well as surface-layer proteins. This article addresses structure, analysis, function, genetic basis, biosynthesis, and biomedical and biotechnological applications of cell-envelope glycoconjugates, S-layer glycoprotein glycans, and \"nonclassical\" secondary-cell wall polysaccharides. The latter group of polymers mediates the important attachment and regular orientation of the S-layer to the cell wall. The structures of these glycopolymers reveal an enormous diversity, resembling the structural variability of bacterial lipopolysaccharides and capsular polysaccharides. While most examples are presented for Gram-positive bacteria, the S-layer glycan of the Gram-negative pathogen Tannerella forsythia is also discussed. In addition, archaeal S-layer glycoproteins are briefly summarized. </p>","PeriodicalId":7215,"journal":{"name":"Advances in carbohydrate chemistry and biochemistry","volume":"69 ","pages":"209-72"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/B978-0-12-408093-5.00006-X","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in carbohydrate chemistry and biochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/B978-0-12-408093-5.00006-X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 36

Abstract

Prokaryotic glycosylation fulfills an important role in maintaining and protecting the structural integrity and function of the bacterial cell wall, as well as serving as a flexible adaption mechanism to evade environmental and host-induced pressure. The scope of bacterial and archaeal protein glycosylation has considerably expanded over the past decade(s), with numerous examples covering the glycosylation of flagella, pili, glycosylated enzymes, as well as surface-layer proteins. This article addresses structure, analysis, function, genetic basis, biosynthesis, and biomedical and biotechnological applications of cell-envelope glycoconjugates, S-layer glycoprotein glycans, and "nonclassical" secondary-cell wall polysaccharides. The latter group of polymers mediates the important attachment and regular orientation of the S-layer to the cell wall. The structures of these glycopolymers reveal an enormous diversity, resembling the structural variability of bacterial lipopolysaccharides and capsular polysaccharides. While most examples are presented for Gram-positive bacteria, the S-layer glycan of the Gram-negative pathogen Tannerella forsythia is also discussed. In addition, archaeal S-layer glycoproteins are briefly summarized.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细菌细胞包膜糖结合。
原核糖基化在维持和保护细菌细胞壁的结构完整性和功能方面发挥着重要作用,并作为一种灵活的适应机制来逃避环境和宿主诱导的压力。细菌和古细菌蛋白质糖基化的范围在过去的十年中已经大大扩大,有许多例子涵盖了鞭毛、毛、糖基化酶以及表面层蛋白质的糖基化。本文阐述了细胞包膜糖缀合物、s层糖蛋白聚糖和“非经典”次级细胞壁多糖的结构、分析、功能、遗传基础、生物合成以及生物医学和生物技术应用。后一组聚合物介导了s层对细胞壁的重要附着和规则取向。这些糖共聚物的结构显示出巨大的多样性,类似于细菌脂多糖和荚膜多糖的结构可变性。虽然大多数的例子都是针对革兰氏阳性细菌提出的,但也讨论了革兰氏阴性病原体单宁菌连翘的s层聚糖。此外,对古菌s层糖蛋白进行了简要综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in carbohydrate chemistry and biochemistry
Advances in carbohydrate chemistry and biochemistry 生物-生化与分子生物学
CiteScore
2.20
自引率
0.00%
发文量
0
期刊介绍: Advances in Carbohydrate Chemistry and Biochemistry has provided, since its inception in 1945, critical and informative articles written by research specialists that integrate the industrial, analytical, and technological aspects of biochemistry, organic chemistry, and instrumentation methodology to the study of carbohydrates. Its articles present a definitive interpretation of the current status and future trends in carbohydrate chemistry and biochemistry.
期刊最新文献
Towards one-pot selective synthesis of cyclic oligosaccharides. Pseudo-glycoconjugates with a C-glycoside linkage. Conformationally restricted donors for stereoselective glycosylation. Boron-mediated aglycon delivery (BMAD) for the stereoselective synthesis of 1,2-cis glycosides. Therapeutic in vivo synthetic chemistry using an artificial metalloenzyme with glycosylated human serum albumin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1