Phenotype-dependent role of the L-type calcium current in embryonic stem cell derived cardiomyocytes.

IF 1.5 Q4 CELL BIOLOGY American journal of stem cells Pub Date : 2014-03-13 eCollection Date: 2014-01-01
Pauline Dan, Zheng Zeng, Ying Li, Yang Qu, Leif Hove-Madsen, Glen F Tibbits
{"title":"Phenotype-dependent role of the L-type calcium current in embryonic stem cell derived cardiomyocytes.","authors":"Pauline Dan,&nbsp;Zheng Zeng,&nbsp;Ying Li,&nbsp;Yang Qu,&nbsp;Leif Hove-Madsen,&nbsp;Glen F Tibbits","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Although the L-type Ca(2+) current (ICa,L) plays an important role in cardiac contractility and pacemaking, its role in embryonic stem-cell derived cardiomyocytes (ESC-CMs) has not yet been explored in detail. We used patch-clamp techniques to characterize ICa,L, action potential properties, and nifedipine (an ICa,L blocker) sensitivity on spontaneously contracting embryoid bodies (EBs) or isolated ESC-CMs. Cellular preparations exhibited differential sensitivity to nifedipine, with substantial variation in the dose required to abolish automaticity. Isolated ESC-CMs expressing nodal-like action potentials were highly sensitive to nifedipine; 1 nM significantly decreased firing rate, diastolic depolarization rate (DDR), and upstroke velocity, and 10 nM completely abolished spontaneous activity. In contrast, ESC-CMs expressing atrial-like action potentials were relatively nifedipine-resistant, requiring 10 μM to arrest automaticity; 1 μM significantly decreased upstroke velocity while the firing rate and DDR were unaffected. Nodal-like cells exhibited a more negative voltage for half-maximal ICa activation (-30 ± 1 mV vs. -20 ± 3 mV; p<0.05) and slower inactivation (71 ± 10 ms vs. 43 ± 3 ms; p<0.05) than atrial-like cells. Our data indicate that ICa,L differentially regulates automaticity and chronotropy in nodal-like ESC-CMs, and primarily links excitation to contraction in atrial-like ESC-CMs by contributing to the upstroke phase of the action potential. </p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2014-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960756/pdf/ajsc0003-0037.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of stem cells","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Although the L-type Ca(2+) current (ICa,L) plays an important role in cardiac contractility and pacemaking, its role in embryonic stem-cell derived cardiomyocytes (ESC-CMs) has not yet been explored in detail. We used patch-clamp techniques to characterize ICa,L, action potential properties, and nifedipine (an ICa,L blocker) sensitivity on spontaneously contracting embryoid bodies (EBs) or isolated ESC-CMs. Cellular preparations exhibited differential sensitivity to nifedipine, with substantial variation in the dose required to abolish automaticity. Isolated ESC-CMs expressing nodal-like action potentials were highly sensitive to nifedipine; 1 nM significantly decreased firing rate, diastolic depolarization rate (DDR), and upstroke velocity, and 10 nM completely abolished spontaneous activity. In contrast, ESC-CMs expressing atrial-like action potentials were relatively nifedipine-resistant, requiring 10 μM to arrest automaticity; 1 μM significantly decreased upstroke velocity while the firing rate and DDR were unaffected. Nodal-like cells exhibited a more negative voltage for half-maximal ICa activation (-30 ± 1 mV vs. -20 ± 3 mV; p<0.05) and slower inactivation (71 ± 10 ms vs. 43 ± 3 ms; p<0.05) than atrial-like cells. Our data indicate that ICa,L differentially regulates automaticity and chronotropy in nodal-like ESC-CMs, and primarily links excitation to contraction in atrial-like ESC-CMs by contributing to the upstroke phase of the action potential.

Abstract Image

Abstract Image

Abstract Image

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
l型钙电流在胚胎干细胞来源的心肌细胞中的表型依赖作用。
虽然L型Ca(2+)电流(ICa,L)在心脏收缩和起搏中起着重要作用,但其在胚胎干细胞来源的心肌细胞(ESC-CMs)中的作用尚未被详细探讨。我们使用膜片钳技术来表征ICa、L、动作电位特性,以及硝苯地平(一种ICa、L阻滞剂)对自发收缩胚状体(EBs)或分离的ESC-CMs的敏感性。细胞制剂对硝苯地平表现出不同的敏感性,在消除自动性所需的剂量上有很大的变化。表达结样动作电位的分离ESC-CMs对硝苯地平高度敏感;1 nM显著降低放电率、舒张去极化率(DDR)和上冲程速度,10 nM完全消除自发活性。相比之下,表达心房样动作电位的ESC-CMs相对耐硝苯地平,需要10 μM才能阻止自动性;1 μM显著降低了上冲程速度,但射击速率和DDR未受影响。节样细胞在半最大ICa激活时表现出更负的电压(-30±1 mV vs -20±3 mV;p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cellular therapies for idiopathic pulmonary fibrosis: current progress and future prospects. Complete lasting reversal of polycystic ovary syndrome from intravenous umbilical cord derived mesenchymal stem cell infusion. Examining the level of inflammatory cytokines TNF-α and IL-8 produced by osteoblasts differentiated from dental pulp stem cells. Exploring the application of stem cell technology in treating sensorineural hearing loss. Acoustic vibration promotes in vitro expansion of human embryonic stem cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1