A physiological neural controller of a muscle fiber oculomotor plant in horizontal monkey saccades.

ISRN ophthalmology Pub Date : 2014-05-07 eCollection Date: 2014-01-01 DOI:10.1155/2014/406210
Alireza Ghahari, John D Enderle
{"title":"A physiological neural controller of a muscle fiber oculomotor plant in horizontal monkey saccades.","authors":"Alireza Ghahari, John D Enderle","doi":"10.1155/2014/406210","DOIUrl":null,"url":null,"abstract":"<p><p>A neural network model of biophysical neurons in the midbrain is presented to drive a muscle fiber oculomotor plant during horizontal monkey saccades. Neural circuitry, including omnipause neuron, premotor excitatory and inhibitory burst neurons, long lead burst neuron, tonic neuron, interneuron, abducens nucleus, and oculomotor nucleus, is developed to examine saccade dynamics. The time-optimal control strategy by realization of agonist and antagonist controller models is investigated. In consequence, each agonist muscle fiber is stimulated by an agonist neuron, while an antagonist muscle fiber is unstimulated by a pause and step from the antagonist neuron. It is concluded that the neural network is constrained by a minimum duration of the agonist pulse and that the most dominant factor in determining the saccade magnitude is the number of active neurons for the small saccades. For the large saccades, however, the duration of agonist burst firing significantly affects the control of saccades. The proposed saccadic circuitry establishes a complete model of saccade generation since it not only includes the neural circuits at both the premotor and motor stages of the saccade generator, but also uses a time-optimal controller to yield the desired saccade magnitude. </p>","PeriodicalId":90193,"journal":{"name":"ISRN ophthalmology","volume":"2014 ","pages":"406210"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040203/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/406210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A neural network model of biophysical neurons in the midbrain is presented to drive a muscle fiber oculomotor plant during horizontal monkey saccades. Neural circuitry, including omnipause neuron, premotor excitatory and inhibitory burst neurons, long lead burst neuron, tonic neuron, interneuron, abducens nucleus, and oculomotor nucleus, is developed to examine saccade dynamics. The time-optimal control strategy by realization of agonist and antagonist controller models is investigated. In consequence, each agonist muscle fiber is stimulated by an agonist neuron, while an antagonist muscle fiber is unstimulated by a pause and step from the antagonist neuron. It is concluded that the neural network is constrained by a minimum duration of the agonist pulse and that the most dominant factor in determining the saccade magnitude is the number of active neurons for the small saccades. For the large saccades, however, the duration of agonist burst firing significantly affects the control of saccades. The proposed saccadic circuitry establishes a complete model of saccade generation since it not only includes the neural circuits at both the premotor and motor stages of the saccade generator, but also uses a time-optimal controller to yield the desired saccade magnitude.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水平猴眼球移动中肌纤维眼球运动植物的生理神经控制器
该研究提出了中脑生物物理神经元的神经网络模型,以驱动猴子水平眼球移动过程中的肌纤维眼球运动植物。该模型建立了神经回路,包括全能神经元、运动前兴奋性和抑制性爆发神经元、长导爆发神经元、强直神经元、中间神经元、外显子核和眼球运动核,以研究眼球运动的动态变化。通过实现激动剂和拮抗剂控制器模型,研究了时间最优控制策略。因此,每个激动肌纤维都受到一个激动神经元的刺激,而拮抗肌纤维则因拮抗神经元的暂停和阶跃而不受刺激。结论是,神经网络受制于激动剂脉冲的最短持续时间,而决定囊回幅度的最主要因素是小囊回的活跃神经元数量。然而,对于大的囊闪来说,激动剂爆发点燃的持续时间会对囊闪的控制产生重大影响。所提出的囊状动作电路建立了一个完整的囊状动作发生模型,因为它不仅包括囊状动作发生器前运动阶段和运动阶段的神经回路,而且还使用时间最优控制器来产生所需的囊状动作幅度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Laser-Assisted Subepithelial Keratectomy versus Laser In Situ Keratomileusis in Myopia: A Systematic Review and Meta-Analysis. A physiological neural controller of a muscle fiber oculomotor plant in horizontal monkey saccades. Present and possible therapies for age-related macular degeneration. Orbital Volumetry in Graves' Orbitopathy: Muscle and Fat Involvement in relation to Dysthyroid Optic Neuropathy. Aspheric intraocular lenses implantation for cataract patients with extreme myopia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1