Limits of computational biology.

Q2 Medicine In Silico Biology Pub Date : 2015-01-01 DOI:10.3233/ISB-140461
Dennis Bray
{"title":"Limits of computational biology.","authors":"Dennis Bray","doi":"10.3233/ISB-140461","DOIUrl":null,"url":null,"abstract":"<p><p>Are we close to a complete inventory of living processes so that we might expect in the near future to reproduce every essential aspect necessary for life? Or are there mechanisms and processes in cells and organisms that are presently inaccessible to us? Here I argue that a close examination of a particularly well-understood system--that of Escherichia coli chemotaxis--shows we are still a long way from a complete description. There is a level of molecular uncertainty, particularly that responsible for fine-tuning and adaptation to myriad external conditions, which we presently cannot resolve or reproduce on a computer. Moreover, the same uncertainty exists for any process in any organism and is especially pronounced and important in higher animals such as humans. Embryonic development, tissue homeostasis, immune recognition, memory formation, and survival in the real world, all depend on vast numbers of subtle variations in cell chemistry most of which are presently unknown or only poorly characterized. Overcoming these limitations will require us to not only accumulate large quantities of highly detailed data but also develop new computational methods able to recapitulate the massively parallel processing of living cells.</p>","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/ISB-140461","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ISB-140461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 8

Abstract

Are we close to a complete inventory of living processes so that we might expect in the near future to reproduce every essential aspect necessary for life? Or are there mechanisms and processes in cells and organisms that are presently inaccessible to us? Here I argue that a close examination of a particularly well-understood system--that of Escherichia coli chemotaxis--shows we are still a long way from a complete description. There is a level of molecular uncertainty, particularly that responsible for fine-tuning and adaptation to myriad external conditions, which we presently cannot resolve or reproduce on a computer. Moreover, the same uncertainty exists for any process in any organism and is especially pronounced and important in higher animals such as humans. Embryonic development, tissue homeostasis, immune recognition, memory formation, and survival in the real world, all depend on vast numbers of subtle variations in cell chemistry most of which are presently unknown or only poorly characterized. Overcoming these limitations will require us to not only accumulate large quantities of highly detailed data but also develop new computational methods able to recapitulate the massively parallel processing of living cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算生物学的极限。
我们是否接近一个完整的生命过程清单,以便我们可以期望在不久的将来复制生命所必需的每一个基本方面?或者细胞和有机体中是否存在我们目前无法理解的机制和过程?在这里,我认为,对一个特别容易理解的系统——大肠杆菌趋化性系统——的仔细研究表明,我们离完整的描述还有很长的路要走。分子有一定程度的不确定性,特别是负责微调和适应无数外部条件的分子,我们目前无法在计算机上解决或复制这些问题。此外,同样的不确定性存在于任何生物体的任何过程中,在人类等高等动物中尤其明显和重要。胚胎发育、组织稳态、免疫识别、记忆形成以及在现实世界中的生存,都依赖于细胞化学中大量的细微变化,其中大多数目前尚不清楚或只有很少的特征。要克服这些限制,我们不仅需要积累大量非常详细的数据,还需要开发新的计算方法,能够重现活细胞的大规模并行处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
In Silico Biology
In Silico Biology Computer Science-Computational Theory and Mathematics
CiteScore
2.20
自引率
0.00%
发文量
1
期刊介绍: The considerable "algorithmic complexity" of biological systems requires a huge amount of detailed information for their complete description. Although far from being complete, the overwhelming quantity of small pieces of information gathered for all kind of biological systems at the molecular and cellular level requires computational tools to be adequately stored and interpreted. Interpretation of data means to abstract them as much as allowed to provide a systematic, an integrative view of biology. Most of the presently available scientific journals focus either on accumulating more data from elaborate experimental approaches, or on presenting new algorithms for the interpretation of these data. Both approaches are meritorious.
期刊最新文献
Modelling speciation: Problems and implications. Where Do CABs Exist? Verification of a specific region containing concave Actin Bundles (CABs) in a 3-Dimensional confocal image. scAN1.0: A reproducible and standardized pipeline for processing 10X single cell RNAseq data. Modeling and characterization of inter-individual variability in CD8 T cell responses in mice. Cancer immunoediting: A game theoretical approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1