Modulating LPS signal transduction at the LPS receptor complex with synthetic Lipid A analogues.

Aileen F B White, Alexei V Demchenko
{"title":"Modulating LPS signal transduction at the LPS receptor complex with synthetic Lipid A analogues.","authors":"Aileen F B White,&nbsp;Alexei V Demchenko","doi":"10.1016/B978-0-12-800128-8.00005-4","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis, defined as a clinical syndrome brought about by an amplified and dysregulated inflammatory response to infections, is one of the leading causes of death worldwide. Despite persistent attempts to develop treatment strategies to manage sepsis in the clinical setting, the basic elements of treatment have not changed since the 1960s. As such, the development of effective therapies for reducing inflammatory reactions and end-organ dysfunction in critically ill patients with sepsis remains a global priority. Advances in understanding of the immune response to sepsis provide the opportunity to develop more effective pharmaceuticals. This article details current information on the modulation of the lipopolysaccharide (LPS) receptor complex with synthetic Lipid A mimetics. As the initial and most critical event in sepsis pathophysiology, the LPS receptor provides an attractive target for antisepsis agents. One of the well-studied approaches to sepsis therapy involves the use of derivatives of Lipid A, the membrane-anchor portion of an LPS, which is largely responsible for its endotoxic activity. This article describes the structural and conformational requirements influencing the ability of Lipid A analogues to compete with LPS for binding to the LPS receptor complex and to inhibit the induction of the signal transduction pathway by impairing LPS-initiated receptor dimerization. </p>","PeriodicalId":7215,"journal":{"name":"Advances in carbohydrate chemistry and biochemistry","volume":"71 ","pages":"339-89"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/B978-0-12-800128-8.00005-4","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in carbohydrate chemistry and biochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/B978-0-12-800128-8.00005-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 12

Abstract

Sepsis, defined as a clinical syndrome brought about by an amplified and dysregulated inflammatory response to infections, is one of the leading causes of death worldwide. Despite persistent attempts to develop treatment strategies to manage sepsis in the clinical setting, the basic elements of treatment have not changed since the 1960s. As such, the development of effective therapies for reducing inflammatory reactions and end-organ dysfunction in critically ill patients with sepsis remains a global priority. Advances in understanding of the immune response to sepsis provide the opportunity to develop more effective pharmaceuticals. This article details current information on the modulation of the lipopolysaccharide (LPS) receptor complex with synthetic Lipid A mimetics. As the initial and most critical event in sepsis pathophysiology, the LPS receptor provides an attractive target for antisepsis agents. One of the well-studied approaches to sepsis therapy involves the use of derivatives of Lipid A, the membrane-anchor portion of an LPS, which is largely responsible for its endotoxic activity. This article describes the structural and conformational requirements influencing the ability of Lipid A analogues to compete with LPS for binding to the LPS receptor complex and to inhibit the induction of the signal transduction pathway by impairing LPS-initiated receptor dimerization.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成脂质A类似物调节脂多糖受体复合物的脂多糖信号转导。
败血症被定义为一种临床综合征,由对感染的炎症反应放大和失调引起,是世界范围内死亡的主要原因之一。尽管在临床环境中不断尝试制定治疗策略来管理败血症,但自20世纪60年代以来,治疗的基本要素并未改变。因此,开发有效的治疗方法来减少脓毒症危重患者的炎症反应和终末器官功能障碍仍然是全球的优先事项。了解败血症免疫反应的进展为开发更有效的药物提供了机会。本文详细介绍了合成脂质A模拟物调节脂多糖(LPS)受体复合物的最新信息。作为脓毒症病理生理的初始和最关键的事件,LPS受体为抗菌药物提供了一个有吸引力的靶点。一种被充分研究的脓毒症治疗方法涉及脂质A衍生物的使用,脂质A是脂多糖的膜锚定部分,主要负责其内毒活性。本文描述了影响脂质A类似物与LPS竞争与LPS受体复合物结合的能力的结构和构象要求,并通过损害LPS启动的受体二聚化来抑制信号转导途径的诱导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in carbohydrate chemistry and biochemistry
Advances in carbohydrate chemistry and biochemistry 生物-生化与分子生物学
CiteScore
2.20
自引率
0.00%
发文量
0
期刊介绍: Advances in Carbohydrate Chemistry and Biochemistry has provided, since its inception in 1945, critical and informative articles written by research specialists that integrate the industrial, analytical, and technological aspects of biochemistry, organic chemistry, and instrumentation methodology to the study of carbohydrates. Its articles present a definitive interpretation of the current status and future trends in carbohydrate chemistry and biochemistry.
期刊最新文献
Towards one-pot selective synthesis of cyclic oligosaccharides. Pseudo-glycoconjugates with a C-glycoside linkage. Conformationally restricted donors for stereoselective glycosylation. Boron-mediated aglycon delivery (BMAD) for the stereoselective synthesis of 1,2-cis glycosides. Therapeutic in vivo synthetic chemistry using an artificial metalloenzyme with glycosylated human serum albumin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1