{"title":"Exploiting stoichiometric redundancies for computational efficiency and network reduction.","authors":"Brian P Ingalls, Eric Bembenek","doi":"10.3233/ISB-140464","DOIUrl":null,"url":null,"abstract":"<p><p>Analysis of metabolic networks typically begins with construction of the stoichiometry matrix, which characterizes the network topology. This matrix provides, via the balance equation, a description of the potential steady-state flow distribution. This paper begins with the observation that the balance equation depends only on the structure of linear redundancies in the network, and so can be stated in a succinct manner, leading to computational efficiencies in steady-state analysis. This alternative description of steady-state behaviour is then used to provide a novel method for network reduction, which complements existing algorithms for describing intracellular networks in terms of input-output macro-reactions (to facilitate bioprocess optimization and control). Finally, it is demonstrated that this novel reduction method can be used to address elementary mode analysis of large networks: the modes supported by a reduced network can capture the input-output modes of a metabolic module with significantly reduced computational effort. </p>","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":"12 1-2","pages":"55-67"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/ISB-140464","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ISB-140464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 2
Abstract
Analysis of metabolic networks typically begins with construction of the stoichiometry matrix, which characterizes the network topology. This matrix provides, via the balance equation, a description of the potential steady-state flow distribution. This paper begins with the observation that the balance equation depends only on the structure of linear redundancies in the network, and so can be stated in a succinct manner, leading to computational efficiencies in steady-state analysis. This alternative description of steady-state behaviour is then used to provide a novel method for network reduction, which complements existing algorithms for describing intracellular networks in terms of input-output macro-reactions (to facilitate bioprocess optimization and control). Finally, it is demonstrated that this novel reduction method can be used to address elementary mode analysis of large networks: the modes supported by a reduced network can capture the input-output modes of a metabolic module with significantly reduced computational effort.
In Silico BiologyComputer Science-Computational Theory and Mathematics
CiteScore
2.20
自引率
0.00%
发文量
1
期刊介绍:
The considerable "algorithmic complexity" of biological systems requires a huge amount of detailed information for their complete description. Although far from being complete, the overwhelming quantity of small pieces of information gathered for all kind of biological systems at the molecular and cellular level requires computational tools to be adequately stored and interpreted. Interpretation of data means to abstract them as much as allowed to provide a systematic, an integrative view of biology. Most of the presently available scientific journals focus either on accumulating more data from elaborate experimental approaches, or on presenting new algorithms for the interpretation of these data. Both approaches are meritorious.