{"title":"[Central EEG rhythm associated with movement and EEG rhythm associated with spatial reasoning: are they homologous?].","authors":"I V Tarotin, G A Ivanitsky","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>EEG rhythmical picture of subject's movement suppression and spatial-figurative task solving was examined and analyzed. Rhythms appearing during spatial reasoning and suppressed movements with the frequency of about 11 Hz were isolated. It was hypothesized that a functional link exists between these rhythms in the considered behavioral tests. To test the hypothesis and to reveal this connection, experiments were developed and carried out. Then the analysis of recorded EEG signals was conducted by applying Fourier transform, independent component analysis (ICA) and equivalent dipole source localization. Unexpected conclusion about the existence of a general mechanism of movement suppression was drawn.</p>","PeriodicalId":49337,"journal":{"name":"Zhurnal Vysshei Nervnoi Deyatelnosti Imeni I P Pavlova","volume":"64 6","pages":"615-26"},"PeriodicalIF":0.2000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Vysshei Nervnoi Deyatelnosti Imeni I P Pavlova","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
EEG rhythmical picture of subject's movement suppression and spatial-figurative task solving was examined and analyzed. Rhythms appearing during spatial reasoning and suppressed movements with the frequency of about 11 Hz were isolated. It was hypothesized that a functional link exists between these rhythms in the considered behavioral tests. To test the hypothesis and to reveal this connection, experiments were developed and carried out. Then the analysis of recorded EEG signals was conducted by applying Fourier transform, independent component analysis (ICA) and equivalent dipole source localization. Unexpected conclusion about the existence of a general mechanism of movement suppression was drawn.