Spatial Patterns and Functional Profiles for Discovering Structure in fMRI Data.

Polina Golland, Danial Lashkari, Archana Venkataraman
{"title":"Spatial Patterns and Functional Profiles for Discovering Structure in fMRI Data.","authors":"Polina Golland,&nbsp;Danial Lashkari,&nbsp;Archana Venkataraman","doi":"10.1109/ACSSC.2008.5074650","DOIUrl":null,"url":null,"abstract":"<p><p>We explore unsupervised, hypothesis-free methods for fMRI analysis in two different types of experiments. First, we employ clustering to identify large-scale functionally homogeneous systems. We formulate a generative mixture model, derive the EM algorithm and apply it to delineate functional systems. We also investigate spectral clustering in application to this problem and demonstrate that both methods give rise to similar partitions of the brain based on resting state fMRI data. Second, we demonstrate how to extend this approach to include information about the experimental protocol. Specifically, we formulate a mixture model in the space of possible profiles of brain response to stimuli. In both applications, our methods confirm previously known results in brain mapping and point to new research directions for exploratory analysis of fMRI data.</p>","PeriodicalId":72692,"journal":{"name":"Conference record. Asilomar Conference on Signals, Systems & Computers","volume":"2008 ","pages":"1402-1409"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ACSSC.2008.5074650","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference record. Asilomar Conference on Signals, Systems & Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2008.5074650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We explore unsupervised, hypothesis-free methods for fMRI analysis in two different types of experiments. First, we employ clustering to identify large-scale functionally homogeneous systems. We formulate a generative mixture model, derive the EM algorithm and apply it to delineate functional systems. We also investigate spectral clustering in application to this problem and demonstrate that both methods give rise to similar partitions of the brain based on resting state fMRI data. Second, we demonstrate how to extend this approach to include information about the experimental protocol. Specifically, we formulate a mixture model in the space of possible profiles of brain response to stimuli. In both applications, our methods confirm previously known results in brain mapping and point to new research directions for exploratory analysis of fMRI data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在fMRI数据中发现结构的空间模式和功能轮廓。
我们在两种不同类型的实验中探索无监督、无假设的fMRI分析方法。首先,我们使用聚类来识别大规模的功能同构系统。我们建立了一个生成混合模型,推导了EM算法,并将其应用于描述功能系统。我们还研究了光谱聚类在此问题中的应用,并证明两种方法基于静息状态fMRI数据产生相似的大脑分区。其次,我们演示了如何扩展这种方法,以包括有关实验协议的信息。具体地说,我们在大脑对刺激的可能反应的空间中制定了一个混合模型。在这两个应用中,我们的方法证实了先前已知的脑映射结果,并为fMRI数据的探索性分析指出了新的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
期刊最新文献
A novel method for 12-lead ECG reconstruction. Multilevel State-Space Models Enable High Precision Event Related Potential Analysis. Topological Knowledge Distillation for Wearable Sensor Data. A Hybrid Scattering Transform for Signals with Isolated Singularities. A mechanistically interpretable model of the retinal neural code for natural scenes with multiscale adaptive dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1