Abdominal Movements in Insect Flight Reshape the Role of Non-Aerodynamic Structures for Flight Maneuverability I: Model Predictive Control for Flower Tracking.

IF 2.2 4区 生物学 Q2 BIOLOGY Integrative Organismal Biology Pub Date : 2022-09-16 eCollection Date: 2022-01-01 DOI:10.1093/iob/obac039
Jorge Bustamante, Mahad Ahmed, Tanvi Deora, Brian Fabien, Thomas L Daniel
{"title":"Abdominal Movements in Insect Flight Reshape the Role of Non-Aerodynamic Structures for Flight Maneuverability I: Model Predictive Control for Flower Tracking.","authors":"Jorge Bustamante,&nbsp;Mahad Ahmed,&nbsp;Tanvi Deora,&nbsp;Brian Fabien,&nbsp;Thomas L Daniel","doi":"10.1093/iob/obac039","DOIUrl":null,"url":null,"abstract":"<p><p>Research on insect flight control has focused primarily on the role of wings. Yet abdominal deflections during flight can potentially influence the dynamics of flight. This paper assesses the role of airframe deformations in flight, and asks to what extent the abdomen contributes to flight maneuverability. To address this, we use a combination of both a Model Predictive Control (MPC)-inspired computational inertial dynamics model, and free flight experiments in the hawkmoth, <i>Manduca sexta</i>. We explored both underactuated (<i>i.e.</i>, number of outputs are greater than the number of inputs) and fully actuated (equal number of outputs and inputs) systems. Using metrics such as the non-dimensionalized tracking error and cost of transport to evaluate flight performance of the inertial dynamics model, we show that fully actuated simulations minimized the tracking error and cost of transport. Additionally, we tested the effect of restricted abdomen movement on free flight in live hawkmoths by fixing a carbon fiber rod over the thoracic-abdomen joint. Moths with a restricted abdomen performed worse than sham treatment moths. This study finds that abdominal motions contribute to flight control and maneuverability. Such motions of non-aerodynamic structures, found in all flying taxa, can inform the development of multi-actuated micro air vehicles.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555208/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Organismal Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/iob/obac039","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Research on insect flight control has focused primarily on the role of wings. Yet abdominal deflections during flight can potentially influence the dynamics of flight. This paper assesses the role of airframe deformations in flight, and asks to what extent the abdomen contributes to flight maneuverability. To address this, we use a combination of both a Model Predictive Control (MPC)-inspired computational inertial dynamics model, and free flight experiments in the hawkmoth, Manduca sexta. We explored both underactuated (i.e., number of outputs are greater than the number of inputs) and fully actuated (equal number of outputs and inputs) systems. Using metrics such as the non-dimensionalized tracking error and cost of transport to evaluate flight performance of the inertial dynamics model, we show that fully actuated simulations minimized the tracking error and cost of transport. Additionally, we tested the effect of restricted abdomen movement on free flight in live hawkmoths by fixing a carbon fiber rod over the thoracic-abdomen joint. Moths with a restricted abdomen performed worse than sham treatment moths. This study finds that abdominal motions contribute to flight control and maneuverability. Such motions of non-aerodynamic structures, found in all flying taxa, can inform the development of multi-actuated micro air vehicles.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
昆虫飞行中的腹部运动重塑非气动结构对飞行机动性的作用I:花朵跟踪的模型预测控制。
昆虫飞行控制的研究主要集中在翅膀的作用上。然而,飞行过程中的腹部偏转可能会影响飞行的动力学。本文评估了机身变形在飞行中的作用,并探讨了腹部对飞行机动性的影响程度。为了解决这个问题,我们结合了模型预测控制(MPC)启发的计算惯性动力学模型和在Manduca sexta飞蛾上进行的自由飞行实验。我们探索了欠驱动(即输出数量大于输入数量)和完全驱动(输出和输入数量相等)系统。利用无量纲化跟踪误差和运输成本等指标来评估惯性动力学模型的飞行性能,我们表明,完全驱动仿真最小化了跟踪误差和运输成本。此外,我们测试了限制腹部运动对活蛾自由飞行的影响,方法是在胸腹关节上固定一根碳纤维棒。腹部受限的飞蛾比假治疗的飞蛾表现更差。本研究发现腹部运动有助于飞行控制和机动性。这种非气动结构的运动存在于所有飞行类群中,可以为多驱动微型飞行器的发展提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
6.70%
发文量
48
审稿时长
20 weeks
期刊最新文献
Raccoons Reveal Hidden Diversity in Trabecular Bone Development. Ocean Planning and Conservation in the Age of Climate Change: A Roundtable Discussion. Volumetric versus Element-scaling Mass Estimation and Its Application to Permo-Triassic Tetrapods. The Role of Polycystic Kidney Disease-Like Homologs in Planarian Nervous System Regeneration and Function. Risky Business: Predator Chemical Cues Mediate Morphological Changes in Freshwater Snails.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1