{"title":"Making texture descriptors invariant to blur.","authors":"Michael Gadermayr, Andreas Uhl","doi":"10.1186/s13640-016-0116-7","DOIUrl":null,"url":null,"abstract":"<p><p>Besides a high distinctiveness, robustness (or invariance) to image degradations is very desirable for texture feature extraction methods in real-world applications. In this paper, focus is on making arbitrary texture descriptors invariant to blur which is often prevalent in real image data. From previous work, we know that most state-of-the-art texture feature extraction methods are unable to cope even with minor blur degradations if the classifier's training stage is based on idealistic data. However, if the training set suffers similarly from the degradations, the obtained accuracies are significantly higher. Exploiting that knowledge, in this approach the level of blur of each image is increased to a certain threshold, based on the estimation of a blur measure. Experiments with synthetically degraded data show that the method is able to generate a high degree of blur invariance without loosing too much distinctiveness. Finally, we show that our method is not limited to ideal Gaussian blur.</p>","PeriodicalId":54379,"journal":{"name":"Eurasip Journal on Image and Video Processing","volume":"2016 ","pages":"14"},"PeriodicalIF":2.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13640-016-0116-7","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Image and Video Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13640-016-0116-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/3/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5
Abstract
Besides a high distinctiveness, robustness (or invariance) to image degradations is very desirable for texture feature extraction methods in real-world applications. In this paper, focus is on making arbitrary texture descriptors invariant to blur which is often prevalent in real image data. From previous work, we know that most state-of-the-art texture feature extraction methods are unable to cope even with minor blur degradations if the classifier's training stage is based on idealistic data. However, if the training set suffers similarly from the degradations, the obtained accuracies are significantly higher. Exploiting that knowledge, in this approach the level of blur of each image is increased to a certain threshold, based on the estimation of a blur measure. Experiments with synthetically degraded data show that the method is able to generate a high degree of blur invariance without loosing too much distinctiveness. Finally, we show that our method is not limited to ideal Gaussian blur.
期刊介绍:
EURASIP Journal on Image and Video Processing is intended for researchers from both academia and industry, who are active in the multidisciplinary field of image and video processing. The scope of the journal covers all theoretical and practical aspects of the domain, from basic research to development of application.