On Using Residual Voltage to Estimate Electrode Model Parameters for Damage Detection.

Ashwati Krishnan, Shawn K Kelly
{"title":"On Using Residual Voltage to Estimate Electrode Model Parameters for Damage Detection.","authors":"Ashwati Krishnan,&nbsp;Shawn K Kelly","doi":"10.1109/BioCAS.2015.7348354","DOIUrl":null,"url":null,"abstract":"<p><p>Current technology has enabled a significant increase in the number of electrodes for electrical stimulation. For large arrays of electrodes, it becomes increasingly difficult to monitor and detect failures at the stimulation site. In this paper, we propose the idea that the residual voltage from a biphasic electrical stimulation pulse can serve to recognize damage at the electrode-tissue interface. We use a simple switch circuit approach to estimate the relaxation time constant of the electrode model, which essentially models the residual voltage in biphasic electrical stimulation, and compare it with standard electrode characterization techniques. Out of 15 electrodes in a polyimide-based SIROF array, our approach highlights 3 damaged electrodes, consistent with measurements made using cyclic voltammetry and electrode impedance spectroscopy.</p>","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":"2015 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/BioCAS.2015.7348354","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2015.7348354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Current technology has enabled a significant increase in the number of electrodes for electrical stimulation. For large arrays of electrodes, it becomes increasingly difficult to monitor and detect failures at the stimulation site. In this paper, we propose the idea that the residual voltage from a biphasic electrical stimulation pulse can serve to recognize damage at the electrode-tissue interface. We use a simple switch circuit approach to estimate the relaxation time constant of the electrode model, which essentially models the residual voltage in biphasic electrical stimulation, and compare it with standard electrode characterization techniques. Out of 15 electrodes in a polyimide-based SIROF array, our approach highlights 3 damaged electrodes, consistent with measurements made using cyclic voltammetry and electrode impedance spectroscopy.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
残差电压估计电极模型参数在损伤检测中的应用。
目前的技术已经使电刺激电极的数量显著增加。对于大型电极阵列,在增产现场监测和检测故障变得越来越困难。在本文中,我们提出了一种想法,即来自双相电刺激脉冲的残余电压可以用于识别电极-组织界面的损伤。我们使用一种简单的开关电路方法来估计电极模型的松弛时间常数,该模型实质上是对双相电刺激中的残余电压进行建模,并将其与标准电极表征技术进行比较。在基于聚酰亚胺的siof阵列中的15个电极中,我们的方法突出了3个受损电极,与使用循环伏安法和电极阻抗谱的测量结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microscale 3-D Capacitance Tomography with a CMOS Sensor Array. FlowMorph: Morphological Segmentation of Ultrasound-Monitored Spinal Cord Microcirculation. Programmable Electrochemical Stimulation on a Large-Scale CMOS Microelectrode Array. Design and Simulation of a Low Power 384-channel Actively Multiplexed Neural Interface. Estimating Intrinsic Manifold Dimensionality to Classify Task-Related Information in Human and Non-Human Primate Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1