Progress in the design and synthesis of viscosupplements for articular joint lubrication

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Current Opinion in Colloid & Interface Science Pub Date : 2023-08-01 DOI:10.1016/j.cocis.2023.101708
Gavin Gonzales , Stefan Zauscher , Shyni Varghese
{"title":"Progress in the design and synthesis of viscosupplements for articular joint lubrication","authors":"Gavin Gonzales ,&nbsp;Stefan Zauscher ,&nbsp;Shyni Varghese","doi":"10.1016/j.cocis.2023.101708","DOIUrl":null,"url":null,"abstract":"<div><p>Throughout a lifetime, articular joints experience many loading cycles and are prone to mechanical degradation<span><span>. To safeguard the cartilage in these joints, the synovial fluid acts as a natural lubricant. However, degenerative joint diseases, like osteoarthritis, alter the composition of synovial fluid, diminishing its protective properties. In such cases, exogenous lubricants or viscosupplements can be injected to enhance the compromised synovial fluid's function. Scientists are now developing next-generation viscosupplements, based on </span>hyaluronic acid<span> (HA), that can better bind to and adhere to cartilage. Additionally, non-HA-based viscosupplements offer benefits over HA-based ones, as they possess more intricate molecular architectures, such as dendrimer or bottlebrush-like structures. These viscosupplements draw inspiration from natural molecules present in synovial fluid, providing them with a distinct advantage.</span></span></p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135902942300033X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Throughout a lifetime, articular joints experience many loading cycles and are prone to mechanical degradation. To safeguard the cartilage in these joints, the synovial fluid acts as a natural lubricant. However, degenerative joint diseases, like osteoarthritis, alter the composition of synovial fluid, diminishing its protective properties. In such cases, exogenous lubricants or viscosupplements can be injected to enhance the compromised synovial fluid's function. Scientists are now developing next-generation viscosupplements, based on hyaluronic acid (HA), that can better bind to and adhere to cartilage. Additionally, non-HA-based viscosupplements offer benefits over HA-based ones, as they possess more intricate molecular architectures, such as dendrimer or bottlebrush-like structures. These viscosupplements draw inspiration from natural molecules present in synovial fluid, providing them with a distinct advantage.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关节润滑用粘剂的设计与合成研究进展
在整个生命周期中,关节经历了许多加载循环,并且容易发生机械退化。为了保护这些关节的软骨,滑液起到天然润滑剂的作用。然而,退行性关节疾病,如骨关节炎,会改变滑液的成分,降低其保护性能。在这种情况下,可以注射外源性润滑剂或粘剂来增强受损滑液的功能。科学家们目前正在开发下一代以透明质酸(HA)为基础的粘胶补充剂,它可以更好地与软骨结合和粘附。此外,非ha基粘胶剂比ha基粘胶剂更有优势,因为它们具有更复杂的分子结构,如树突状或瓶刷状结构。这些粘补品从滑液中存在的天然分子中汲取灵感,为它们提供了独特的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.50
自引率
1.10%
发文量
74
审稿时长
11.3 weeks
期刊介绍: Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications. Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments. Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.
期刊最新文献
A critical examination of the physics behind the formation of particle-laden fluid interfaces Protorheology in practice: Avoiding misinterpretation Rheological effects of rough colloids at fluid interfaces: An overview Non-fused and fused ring non-fullerene acceptors The rise and potential of top interface modification in tin halide perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1