Doctor AI: Predicting Clinical Events via Recurrent Neural Networks.

JMLR workshop and conference proceedings Pub Date : 2016-08-01 Epub Date: 2016-12-10
Edward Choi, Mohammad Taha Bahadori, Andy Schuetz, Walter F Stewart, Jimeng Sun
{"title":"Doctor AI: Predicting Clinical Events via Recurrent Neural Networks.","authors":"Edward Choi,&nbsp;Mohammad Taha Bahadori,&nbsp;Andy Schuetz,&nbsp;Walter F Stewart,&nbsp;Jimeng Sun","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Leveraging large historical data in electronic health record (EHR), we developed Doctor AI, a generic predictive model that covers observed medical conditions and medication uses. Doctor AI is a temporal model using recurrent neural networks (RNN) and was developed and applied to longitudinal time stamped EHR data from 260K patients over 8 years. Encounter records (e.g. diagnosis codes, medication codes or procedure codes) were input to RNN to predict (all) the diagnosis and medication categories for a subsequent visit. Doctor AI assesses the history of patients to make multilabel predictions (one label for each diagnosis or medication category). Based on separate blind test set evaluation, Doctor AI can perform differential diagnosis with up to 79% recall@30, significantly higher than several baselines. Moreover, we demonstrate great generalizability of Doctor AI by adapting the resulting models from one institution to another without losing substantial accuracy.</p>","PeriodicalId":89793,"journal":{"name":"JMLR workshop and conference proceedings","volume":"56 ","pages":"301-318"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341604/pdf/nihms-845642.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMLR workshop and conference proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/12/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Leveraging large historical data in electronic health record (EHR), we developed Doctor AI, a generic predictive model that covers observed medical conditions and medication uses. Doctor AI is a temporal model using recurrent neural networks (RNN) and was developed and applied to longitudinal time stamped EHR data from 260K patients over 8 years. Encounter records (e.g. diagnosis codes, medication codes or procedure codes) were input to RNN to predict (all) the diagnosis and medication categories for a subsequent visit. Doctor AI assesses the history of patients to make multilabel predictions (one label for each diagnosis or medication category). Based on separate blind test set evaluation, Doctor AI can perform differential diagnosis with up to 79% recall@30, significantly higher than several baselines. Moreover, we demonstrate great generalizability of Doctor AI by adapting the resulting models from one institution to another without losing substantial accuracy.

Abstract Image

Abstract Image

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能医生:通过循环神经网络预测临床事件。
利用电子健康记录(EHR)中的大量历史数据,我们开发了医生人工智能,这是一种涵盖观察到的医疗状况和药物使用的通用预测模型。医生AI是一个使用循环神经网络(RNN)的时间模型,开发并应用于8年来260K名患者的纵向时间戳电子病历数据。将就诊记录(如诊断代码、用药代码或程序代码)输入到RNN中,以预测后续就诊的(所有)诊断和用药类别。医生AI会评估患者的病史,做出多标签预测(每个诊断或药物类别都有一个标签)。基于单独的盲测试集评估,医生AI可以进行高达79%的鉴别诊断recall@30,显著高于几个基线。此外,我们通过将结果模型从一个机构调整到另一个机构,而不会失去实质性的准确性,证明了医生人工智能的良好泛化性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Convex Multiple Sequence Alignment via Entropy-Regularized Dual Decomposition. Greedy Direction Method of Multiplier for MAP Inference of Large Output Domain. A Hybrid Causal Search Algorithm for Latent Variable Models. Doctor AI: Predicting Clinical Events via Recurrent Neural Networks. Uncovering Voice Misuse Using Symbolic Mismatch.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1