Greedy Direction Method of Multiplier for MAP Inference of Large Output Domain.

Xiangru Huang, Qixing Huang, Ian E H Yen, Pradeep Ravikumar, Ruohan Zhang, Inderjit S Dhillon
{"title":"Greedy Direction Method of Multiplier for MAP Inference of Large Output Domain.","authors":"Xiangru Huang,&nbsp;Qixing Huang,&nbsp;Ian E H Yen,&nbsp;Pradeep Ravikumar,&nbsp;Ruohan Zhang,&nbsp;Inderjit S Dhillon","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Maximum-a-Posteriori (MAP) inference lies at the heart of Graphical Models and Structured Prediction. Despite the intractability of exact MAP inference, approximate methods based on LP relaxations have exhibited superior performance across a wide range of applications. Yet for problems involving large output domains (i.e., the state space for each variable is large), standard LP relaxations can easily give rise to a large number of variables and constraints which are beyond the limit of existing optimization algorithms. In this paper, we introduce an effective MAP inference method for problems with large output domains. The method builds upon alternating minimization of an Augmented Lagrangian that exploits the sparsity of messages through greedy optimization techniques. A key feature of our greedy approach is to introduce variables in an on-demand manner with a pre-built data structure over local factors. This results in a single-loop algorithm of sublinear cost per iteration and <i>O</i>(log(1<i>/ε</i>))-type iteration complexity to achieve <i>ε</i> sub-optimality. In addition, we introduce a variant of GDMM for binary MAP inference problems with a large number of factors. Empirically, the proposed algorithms demonstrate orders of magnitude speedup over state-of-the-art MAP inference techniques on MAP inference problems including Segmentation, Protein Folding, Graph Matching, and Multilabel prediction with pairwise interaction.</p>","PeriodicalId":89793,"journal":{"name":"JMLR workshop and conference proceedings","volume":"54 ","pages":"1550-1559"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5581664/pdf/nihms896523.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMLR workshop and conference proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Maximum-a-Posteriori (MAP) inference lies at the heart of Graphical Models and Structured Prediction. Despite the intractability of exact MAP inference, approximate methods based on LP relaxations have exhibited superior performance across a wide range of applications. Yet for problems involving large output domains (i.e., the state space for each variable is large), standard LP relaxations can easily give rise to a large number of variables and constraints which are beyond the limit of existing optimization algorithms. In this paper, we introduce an effective MAP inference method for problems with large output domains. The method builds upon alternating minimization of an Augmented Lagrangian that exploits the sparsity of messages through greedy optimization techniques. A key feature of our greedy approach is to introduce variables in an on-demand manner with a pre-built data structure over local factors. This results in a single-loop algorithm of sublinear cost per iteration and O(log(1))-type iteration complexity to achieve ε sub-optimality. In addition, we introduce a variant of GDMM for binary MAP inference problems with a large number of factors. Empirically, the proposed algorithms demonstrate orders of magnitude speedup over state-of-the-art MAP inference techniques on MAP inference problems including Segmentation, Protein Folding, Graph Matching, and Multilabel prediction with pairwise interaction.

Abstract Image

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大输出域MAP推理的乘法器贪心方向法。
最大后验推理(MAP)是图形模型和结构化预测的核心。尽管精确MAP推理很棘手,但基于LP松弛的近似方法在广泛的应用中表现出优异的性能。然而,对于涉及大输出域(即每个变量的状态空间都很大)的问题,标准LP松弛很容易产生大量超出现有优化算法极限的变量和约束。本文针对具有大输出域的问题,提出了一种有效的MAP推理方法。该方法建立在增广拉格朗日量交替最小化的基础上,通过贪婪优化技术利用消息的稀疏性。我们的贪心方法的一个关键特征是,在本地因素上使用预先构建的数据结构以随需应变的方式引入变量。这导致了每次迭代的次线性代价和O(log(1/ε))型迭代复杂度的单循环算法来实现ε次最优性。此外,我们还引入了GDMM的一种变体,用于具有大量因素的二元MAP推理问题。从经验上看,所提出的算法在MAP推理问题上的速度比最先进的MAP推理技术快了几个数量级,包括分割、蛋白质折叠、图匹配和具有成对交互的多标签预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Convex Multiple Sequence Alignment via Entropy-Regularized Dual Decomposition. Greedy Direction Method of Multiplier for MAP Inference of Large Output Domain. A Hybrid Causal Search Algorithm for Latent Variable Models. Doctor AI: Predicting Clinical Events via Recurrent Neural Networks. Uncovering Voice Misuse Using Symbolic Mismatch.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1