Jun Fan, Yirong Wu, Ming Yuan, David Page, Jie Liu, Irene M Ong, Peggy Peissig, Elizabeth Burnside
{"title":"Structure-Leveraged Methods in Breast Cancer Risk Prediction.","authors":"Jun Fan, Yirong Wu, Ming Yuan, David Page, Jie Liu, Irene M Ong, Peggy Peissig, Elizabeth Burnside","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting breast cancer risk has long been a goal of medical research in the pursuit of precision medicine. The goal of this study is to develop novel penalized methods to improve breast cancer risk prediction by leveraging structure information in electronic health records. We conducted a retrospective case-control study, garnering 49 mammography descriptors and 77 high-frequency/low-penetrance single-nucleotide polymorphisms (SNPs) from an existing personalized medicine data repository. Structured mammography reports and breast imaging features have long been part of a standard electronic health record (EHR), and genetic markers likely will be in the near future. Lasso and its variants are widely used approaches to integrated learning and feature selection, and our methodological contribution is to incorporate the dependence structure among the features into these approaches. More specifically, we propose a new methodology by combining group penalty and [Formula: see text] (1 ≤ <i>p</i> ≤ 2) fusion penalty to improve breast cancer risk prediction, taking into account structure information in mammography descriptors and SNPs. We demonstrate that our method provides benefits that are both statistically significant and potentially significant to people's lives.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"17 ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5446896/pdf/nihms-826646.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting breast cancer risk has long been a goal of medical research in the pursuit of precision medicine. The goal of this study is to develop novel penalized methods to improve breast cancer risk prediction by leveraging structure information in electronic health records. We conducted a retrospective case-control study, garnering 49 mammography descriptors and 77 high-frequency/low-penetrance single-nucleotide polymorphisms (SNPs) from an existing personalized medicine data repository. Structured mammography reports and breast imaging features have long been part of a standard electronic health record (EHR), and genetic markers likely will be in the near future. Lasso and its variants are widely used approaches to integrated learning and feature selection, and our methodological contribution is to incorporate the dependence structure among the features into these approaches. More specifically, we propose a new methodology by combining group penalty and [Formula: see text] (1 ≤ p ≤ 2) fusion penalty to improve breast cancer risk prediction, taking into account structure information in mammography descriptors and SNPs. We demonstrate that our method provides benefits that are both statistically significant and potentially significant to people's lives.
期刊介绍:
The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online.
JMLR has a commitment to rigorous yet rapid reviewing.
JMLR seeks previously unpublished papers on machine learning that contain:
new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature;
experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems;
accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods;
formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks;
development of new analytical frameworks that advance theoretical studies of practical learning methods;
computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.