Modelling, Fabrication and Testing of RF Micro-Electro-Mechanical-Systems Switch

IF 1.8 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY IEEE Open Journal of Nanotechnology Pub Date : 2022-12-26 DOI:10.1109/OJNANO.2022.3232182
Srinivasa Rao Karumuri;P. Ashok Kumar;Girija Sravani Kondavitee;Aime Lay-Ekuakille
{"title":"Modelling, Fabrication and Testing of RF Micro-Electro-Mechanical-Systems Switch","authors":"Srinivasa Rao Karumuri;P. Ashok Kumar;Girija Sravani Kondavitee;Aime Lay-Ekuakille","doi":"10.1109/OJNANO.2022.3232182","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to evaluate capacitance developed by perforated membrane of RF MEMS switch with high accuracy. An analytical model is developed for both upstate and downstate of switch by including parasitic and fringing field capacitance in parallel plate capacitance model. The proposed analytical model includes the ligament efficiency term directly in the formula which reduce the efforts to calculate it individually for various perforation sizes. The capacitance analysis has been carried out by varying the physical parameters to optimize the switch dimensions and these analytical results are compared with the simulation results carried out by 3D FEM tool COMSOL multiphysics for validation. The proposed analytical model results are then compared with benchmark models to understand the efficiency of proposed model in estimating the up and downstate capacitances. The proposed analytical model proved to be good with less error percentage of 2.13% at upstate and 2.59% at downstate whereas the other benchmark models gives greater than 5% error. The switch is then fabricated using 4-mask surface micromachining process and experimental evaluation of capacitance at both upstate and downstate is carried out by DC probe station. Experimentally, the upstate capacitance is obtained as 37.4 fF and downstate as 2.43 pF and the analytical models exhibited low error percentage of 3.95% at upstate and 2.05% at downstate condition for µ = 0.5.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"81-94"},"PeriodicalIF":1.8000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/10007543/09999329.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9999329/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an approach to evaluate capacitance developed by perforated membrane of RF MEMS switch with high accuracy. An analytical model is developed for both upstate and downstate of switch by including parasitic and fringing field capacitance in parallel plate capacitance model. The proposed analytical model includes the ligament efficiency term directly in the formula which reduce the efforts to calculate it individually for various perforation sizes. The capacitance analysis has been carried out by varying the physical parameters to optimize the switch dimensions and these analytical results are compared with the simulation results carried out by 3D FEM tool COMSOL multiphysics for validation. The proposed analytical model results are then compared with benchmark models to understand the efficiency of proposed model in estimating the up and downstate capacitances. The proposed analytical model proved to be good with less error percentage of 2.13% at upstate and 2.59% at downstate whereas the other benchmark models gives greater than 5% error. The switch is then fabricated using 4-mask surface micromachining process and experimental evaluation of capacitance at both upstate and downstate is carried out by DC probe station. Experimentally, the upstate capacitance is obtained as 37.4 fF and downstate as 2.43 pF and the analytical models exhibited low error percentage of 3.95% at upstate and 2.05% at downstate condition for µ = 0.5.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
射频微机电系统开关的建模、制造和测试
本文提出了一种高精度评估射频MEMS开关穿孔膜电容的方法。在并联板电容模型中加入寄生场电容和边缘场电容,建立了开关上、下两种状态的解析模型。所提出的分析模型将韧带效率项直接包含在公式中,减少了对不同穿孔尺寸单独计算的工作量。通过改变物理参数来优化开关尺寸,进行了电容分析,并将分析结果与COMSOL multiphysics三维有限元工具的仿真结果进行了对比验证。然后将所提出的分析模型结果与基准模型进行比较,以了解所提出的模型在估计上下状态电容方面的效率。结果表明,该分析模型误差较小,上状态误差为2.13%,下状态误差为2.59%,而其他基准模型误差均大于5%。然后采用四掩模表面微加工工艺制作开关,并利用直流探头站对开关上、下状态电容进行了实验评估。实验结果表明,在μ = 0.5条件下,上态电容为37.4 fF,下态电容为2.43 pF,上态误差为3.95%,下态误差为2.05%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
17.60%
发文量
10
审稿时长
12 weeks
期刊最新文献
High-Performance Dielectric Modulated Epitaxial Tunnel Layer Tunnel FET for Label-Free Detection of Biomolecules Portable and Cost-Effective Handheld Ultrasound System Utilizing FPGA-Based Synthetic Aperture Imaging Polarization and Strain in Piezoelectric Nanomaterials: Advancing Sensing Applications in Biomedical Technology Manipulation of 2D and 3D Magnetic Solitons Under the Influence of DMI Gradients Gallium Sulfide-Immobilized Optical Fiber-Based SPR Sensor for Detection of Brilliant Blue Food Adulteration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1