Learning-Based Estimation of Functional Correlation Tensors in White Matter for Early Diagnosis of Mild Cognitive Impairment.

Lichi Zhang, Han Zhang, Xiaobo Chen, Qian Wang, Pew-Thian Yap, Dinggang Shen
{"title":"Learning-Based Estimation of Functional Correlation Tensors in White Matter for Early Diagnosis of Mild Cognitive Impairment.","authors":"Lichi Zhang,&nbsp;Han Zhang,&nbsp;Xiaobo Chen,&nbsp;Qian Wang,&nbsp;Pew-Thian Yap,&nbsp;Dinggang Shen","doi":"10.1007/978-3-319-67434-6_8","DOIUrl":null,"url":null,"abstract":"<p><p>It has been recently demonstrated that the local BOLD signals in resting-state fMRI (rs-fMRI) can be captured for the white matter (WM) by functional correlation tensors (FCTs). FCTs provide similar orientation information as diffusion tensors (DTs), and also functional information concerning brain dynamics. However, FCTs are susceptible to noise due to the low signal-to-noise ratio nature of WM BOLD signals. Here we introduce a robust FCT estimation method to facilitate individualized diagnosis. <i>First</i>, we develop a noise-tolerating patch-based approach to measure spatiotemporal correlations of local BOLD signals. <i>Second</i>, it is also enhanced by DTs predicted from the input rs-fMRI using a learning-based regression model. We evaluate our trained regressor using the high-resolution HCP dataset. The regressor is then applied to estimate the robust FCTs for subjects in the ADNI2 dataset. We demonstrate for the first time the disease diagnostic value of robust FCTs.</p>","PeriodicalId":92111,"journal":{"name":"Patch-based techniques in medical imaging : third International Workshop, Patch-MI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Proceedings. Patch-MI (Workshop) (3rd : 2017 : Quebec, Quebec)","volume":"10530 ","pages":"65-73"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-67434-6_8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patch-based techniques in medical imaging : third International Workshop, Patch-MI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Proceedings. Patch-MI (Workshop) (3rd : 2017 : Quebec, Quebec)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-67434-6_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It has been recently demonstrated that the local BOLD signals in resting-state fMRI (rs-fMRI) can be captured for the white matter (WM) by functional correlation tensors (FCTs). FCTs provide similar orientation information as diffusion tensors (DTs), and also functional information concerning brain dynamics. However, FCTs are susceptible to noise due to the low signal-to-noise ratio nature of WM BOLD signals. Here we introduce a robust FCT estimation method to facilitate individualized diagnosis. First, we develop a noise-tolerating patch-based approach to measure spatiotemporal correlations of local BOLD signals. Second, it is also enhanced by DTs predicted from the input rs-fMRI using a learning-based regression model. We evaluate our trained regressor using the high-resolution HCP dataset. The regressor is then applied to estimate the robust FCTs for subjects in the ADNI2 dataset. We demonstrate for the first time the disease diagnostic value of robust FCTs.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于学习的脑白质功能相关张量评估在轻度认知障碍早期诊断中的应用。
最近有研究表明,静息状态fMRI (rs-fMRI)中的局部BOLD信号可以通过功能相关张量(fct)捕获到白质(WM)。fct提供与扩散张量(DTs)相似的方向信息,以及有关脑动力学的功能信息。然而,由于WM BOLD信号的低信噪比特性,fct容易受到噪声的影响。本文介绍了一种鲁棒FCT估计方法,以方便个性化诊断。首先,我们开发了一种基于噪声容忍补丁的方法来测量局部BOLD信号的时空相关性。其次,使用基于学习的回归模型从输入rs-fMRI预测的dt也增强了它。我们使用高分辨率HCP数据集评估我们训练的回归量。然后应用回归量来估计ADNI2数据集中受试者的鲁棒fct。我们首次证明了健壮的fct的疾病诊断价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Brain Image Labeling Using Multi-atlas Guided 3D Fully Convolutional Networks. Learning-Based Estimation of Functional Correlation Tensors in White Matter for Early Diagnosis of Mild Cognitive Impairment. Whole Brain Parcellation with Pathology: Validation on Ventriculomegaly Patients. Multiple Sclerosis Lesion Segmentation Using Joint Label Fusion. 4D Multi-atlas Label Fusion using Longitudinal Images.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1