Multiple Sclerosis Lesion Segmentation Using Joint Label Fusion.

Mengjin Dong, Ipek Oguz, Nagesh Subbana, Peter Calabresi, Russell T Shinohara, Paul Yushkevich
{"title":"Multiple Sclerosis Lesion Segmentation Using Joint Label Fusion.","authors":"Mengjin Dong,&nbsp;Ipek Oguz,&nbsp;Nagesh Subbana,&nbsp;Peter Calabresi,&nbsp;Russell T Shinohara,&nbsp;Paul Yushkevich","doi":"10.1007/978-3-319-67434-6_16","DOIUrl":null,"url":null,"abstract":"<p><p>This paper adapts the joint label fusion (JLF) multi-atlas image segmentation algorithm to the problem of multiple sclerosis (MS) lesion segmentation in multi-modal MRI. Conventionally, JLF requires a set of atlas images to be co-registered to the target image using deformable registration. However, given the variable spatial distribution of lesions in the brain, whole-brain deformable registration is unlikely to line up lesions between atlases and the target image. As a solution, we propose to first pre-segment the target image using an intensity regression based technique, yielding a set of \"candidate\" lesions. Each \"candidate\" lesion is then matched to a set of similar lesions in the atlas based on location and size; and deformable registration and JLF are applied at the level of the \"candidate\" lesion. The approach is evaluated on a dataset of 74 subjects with MS and shown to improve Dice similarity coefficient with reference manual segmentation by 12% over intensity regression technique.</p>","PeriodicalId":92111,"journal":{"name":"Patch-based techniques in medical imaging : third International Workshop, Patch-MI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Proceedings. Patch-MI (Workshop) (3rd : 2017 : Quebec, Quebec)","volume":"10530 ","pages":"138-145"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-67434-6_16","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patch-based techniques in medical imaging : third International Workshop, Patch-MI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Proceedings. Patch-MI (Workshop) (3rd : 2017 : Quebec, Quebec)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-67434-6_16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper adapts the joint label fusion (JLF) multi-atlas image segmentation algorithm to the problem of multiple sclerosis (MS) lesion segmentation in multi-modal MRI. Conventionally, JLF requires a set of atlas images to be co-registered to the target image using deformable registration. However, given the variable spatial distribution of lesions in the brain, whole-brain deformable registration is unlikely to line up lesions between atlases and the target image. As a solution, we propose to first pre-segment the target image using an intensity regression based technique, yielding a set of "candidate" lesions. Each "candidate" lesion is then matched to a set of similar lesions in the atlas based on location and size; and deformable registration and JLF are applied at the level of the "candidate" lesion. The approach is evaluated on a dataset of 74 subjects with MS and shown to improve Dice similarity coefficient with reference manual segmentation by 12% over intensity regression technique.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于关节标签融合的多发性硬化症病灶分割。
本文将联合标签融合(JLF)多图谱图像分割算法应用于多模态MRI中多发性硬化症(MS)病变的分割问题。通常,JLF需要使用可变形配准将一组地图集图像共同配准到目标图像。然而,考虑到大脑中病变的空间分布变化,全脑形变配准不太可能在地图集和目标图像之间排列病变。作为解决方案,我们建议首先使用基于强度回归的技术对目标图像进行预分割,从而产生一组“候选”病灶。然后根据位置和大小将每个“候选”病变与图谱中的一组类似病变进行匹配;在“候选”病变的水平上应用可变形配准和JLF。该方法在74名MS受试者的数据集上进行了评估,结果表明,与强度回归技术相比,参考手工分割的Dice相似系数提高了12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Brain Image Labeling Using Multi-atlas Guided 3D Fully Convolutional Networks. Learning-Based Estimation of Functional Correlation Tensors in White Matter for Early Diagnosis of Mild Cognitive Impairment. Whole Brain Parcellation with Pathology: Validation on Ventriculomegaly Patients. Multiple Sclerosis Lesion Segmentation Using Joint Label Fusion. 4D Multi-atlas Label Fusion using Longitudinal Images.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1