Behnam Nabet, Justin M. Roberts, Dennis L. Buckley, Joshiawa Paulk, Shiva Dastjerdi, Annan Yang, Alan L. Leggett, Michael A. Erb, Matthew A. Lawlor, Amanda Souza, Thomas G. Scott, Sarah Vittori, Jennifer A. Perry, Jun Qi, Georg E. Winter, Kwok-Kin Wong, Nathanael S. Gray, James E. Bradner
{"title":"The dTAG system for immediate and target-specific protein degradation","authors":"Behnam Nabet, Justin M. Roberts, Dennis L. Buckley, Joshiawa Paulk, Shiva Dastjerdi, Annan Yang, Alan L. Leggett, Michael A. Erb, Matthew A. Lawlor, Amanda Souza, Thomas G. Scott, Sarah Vittori, Jennifer A. Perry, Jun Qi, Georg E. Winter, Kwok-Kin Wong, Nathanael S. Gray, James E. Bradner","doi":"10.1038/s41589-018-0021-8","DOIUrl":null,"url":null,"abstract":"Dissection of complex biological systems requires target-specific control of the function or abundance of proteins. Genetic perturbations are limited by off-target effects, multicomponent complexity, and irreversibility. Most limiting is the requisite delay between modulation to experimental measurement. To enable the immediate and selective control of single protein abundance, we created a chemical biology system that leverages the potency of cell-permeable heterobifunctional degraders. The dTAG system pairs a novel degrader of FKBP12F36V with expression of FKBP12F36V in-frame with a protein of interest. By transgene expression or CRISPR-mediated locus-specific knock-in, we exemplify a generalizable strategy to study the immediate consequence of protein loss. Using dTAG, we observe an unexpected superior antiproliferative effect of pan-BET bromodomain degradation over selective BRD4 degradation, characterize immediate effects of KRASG12V loss on proteomic signaling, and demonstrate rapid degradation in vivo. This technology platform will confer kinetic resolution to biological investigation and provide target validation in the context of drug discovery. The dTAG system pairs potent heterobifunctional degraders and extensible tagging strategies to achieve immediate and reversible degradation of divergent proteins, facilitating biological investigation and drug target validation in cells and in mice.","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"14 5","pages":"431-441"},"PeriodicalIF":12.9000,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41589-018-0021-8","citationCount":"478","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41589-018-0021-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 478
Abstract
Dissection of complex biological systems requires target-specific control of the function or abundance of proteins. Genetic perturbations are limited by off-target effects, multicomponent complexity, and irreversibility. Most limiting is the requisite delay between modulation to experimental measurement. To enable the immediate and selective control of single protein abundance, we created a chemical biology system that leverages the potency of cell-permeable heterobifunctional degraders. The dTAG system pairs a novel degrader of FKBP12F36V with expression of FKBP12F36V in-frame with a protein of interest. By transgene expression or CRISPR-mediated locus-specific knock-in, we exemplify a generalizable strategy to study the immediate consequence of protein loss. Using dTAG, we observe an unexpected superior antiproliferative effect of pan-BET bromodomain degradation over selective BRD4 degradation, characterize immediate effects of KRASG12V loss on proteomic signaling, and demonstrate rapid degradation in vivo. This technology platform will confer kinetic resolution to biological investigation and provide target validation in the context of drug discovery. The dTAG system pairs potent heterobifunctional degraders and extensible tagging strategies to achieve immediate and reversible degradation of divergent proteins, facilitating biological investigation and drug target validation in cells and in mice.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.