{"title":"Cycle length identifies obstructive sleep apnea and central sleep apnea in heart failure with reduced ejection fraction.","authors":"Thomas Bitter, Burak Özdemir, Henrik Fox, Dieter Horstkotte, Olaf Oldenburg","doi":"10.1007/s11325-018-1652-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To clarify whether unmasking of central sleep apnea during continuous positive airway pressure (CPAP) initiation can be identified from initial diagnostic polysomnography (PSG) in patients with heart failure with reduced ejection fraction (HFREF) and obstructive sleep apnea (OSA) MATERIALS AND METHODS: Forty-three consecutive patients with obstructive sleep apnea and central sleep apnea (OSA/CSA) in HFREF were matched with 43 HFREF patients with OSA and successful CPAP initiation. Obstructive apneas during diagnostic PSG were then analyzed for cycle length (CL), ventilation length (VL), apnea length (AL), time to peak ventilation (TTPV), and circulatory delay (CD). We calculated duty ratio (DR) as the ratio of VL/CL and mathematic loop gain (LG).</p><p><strong>Results: </strong>While AL was similar, CL, VL, TTPV, CD, and DR was significantly longer in patients with OSA/CSA compared to those with OSA, and LG was significantly higher. Receiver operator curves identified optimal cutoff values of 50.2 s for CL (area under the curve (AUC) 0.85, 29.2 s for VL (AUC 0.92), 11.5 s for TTPV (AUC 0.82), 26.4 s for CD (AUC 0.79), and 3.96 (AUC 0.78)) respectively for LG to identify OSA/CSA.</p><p><strong>Conclusion: </strong>OSA/CSA in HFREF can be identified by longer CL, VL, TTPV, and CD from obstructive events in initial diagnostic PSG. The underlying mechanisms seem to be the presence of an increased LG.</p>","PeriodicalId":21862,"journal":{"name":"Sleep and Breathing","volume":"22 4","pages":"1093-1100"},"PeriodicalIF":2.1000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11325-018-1652-4","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep and Breathing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11325-018-1652-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/4/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Aim: To clarify whether unmasking of central sleep apnea during continuous positive airway pressure (CPAP) initiation can be identified from initial diagnostic polysomnography (PSG) in patients with heart failure with reduced ejection fraction (HFREF) and obstructive sleep apnea (OSA) MATERIALS AND METHODS: Forty-three consecutive patients with obstructive sleep apnea and central sleep apnea (OSA/CSA) in HFREF were matched with 43 HFREF patients with OSA and successful CPAP initiation. Obstructive apneas during diagnostic PSG were then analyzed for cycle length (CL), ventilation length (VL), apnea length (AL), time to peak ventilation (TTPV), and circulatory delay (CD). We calculated duty ratio (DR) as the ratio of VL/CL and mathematic loop gain (LG).
Results: While AL was similar, CL, VL, TTPV, CD, and DR was significantly longer in patients with OSA/CSA compared to those with OSA, and LG was significantly higher. Receiver operator curves identified optimal cutoff values of 50.2 s for CL (area under the curve (AUC) 0.85, 29.2 s for VL (AUC 0.92), 11.5 s for TTPV (AUC 0.82), 26.4 s for CD (AUC 0.79), and 3.96 (AUC 0.78)) respectively for LG to identify OSA/CSA.
Conclusion: OSA/CSA in HFREF can be identified by longer CL, VL, TTPV, and CD from obstructive events in initial diagnostic PSG. The underlying mechanisms seem to be the presence of an increased LG.
Nobuhiko Haruki MD, PhD , Wendy Tsang MD , Paaladinesh Thavendiranathan MD , Anna Woo MD , George Tomlinson PhD , Alexander G. Logan MD , T. Douglas Bradley MD , John S. Floras MD, DPhil , ADVENT-HF Investigators
期刊介绍:
The journal Sleep and Breathing aims to reflect the state of the art in the international science and practice of sleep medicine. The journal is based on the recognition that management of sleep disorders requires a multi-disciplinary approach and diverse perspectives. The initial focus of Sleep and Breathing is on timely and original studies that collect, intervene, or otherwise inform all clinicians and scientists in medicine, dentistry and oral surgery, otolaryngology, and epidemiology on the management of the upper airway during sleep.
Furthermore, Sleep and Breathing endeavors to bring readers cutting edge information about all evolving aspects of common sleep disorders or disruptions, such as insomnia and shift work. The journal includes not only patient studies, but also studies that emphasize the principles of physiology and pathophysiology or illustrate potentially novel approaches to diagnosis and treatment. In addition, the journal features articles that describe patient-oriented and cost-benefit health outcomes research. Thus, with peer review by an international Editorial Board and prompt English-language publication, Sleep and Breathing provides rapid dissemination of clinical and clinically related scientific information. But it also does more: it is dedicated to making the most important developments in sleep disordered breathing easily accessible to clinicians who are treating sleep apnea by presenting well-chosen, well-written, and highly organized information that is useful for patient care.