Use of L-Glutamic Acid in a New Enrichment Broth (R-TATP Broth) for Detecting the Presence or Absence of Molds in Raw Ingredients/Personal Care Product Formulations by Using an ATP Bioluminescence Assay.

IF 0.2 4区 医学 Q4 CHEMISTRY, APPLIED Journal of cosmetic science Pub Date : 2018-01-01
Youjun Yang, Donald J English
{"title":"Use of L-Glutamic Acid in a New Enrichment Broth (R-TATP Broth) for Detecting the Presence or Absence of Molds in Raw Ingredients/Personal Care Product Formulations by Using an ATP Bioluminescence Assay.","authors":"Youjun Yang,&nbsp;Donald J English","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The present study reports the effects of adding L-glutamic acid to a new enrichment broth designated as R-TATP broth, to promote the growth of slow-growing mold microorganisms such as <i>Aspergillus brasiliensis</i> and <i>Aspergillus oryzae</i>, without interfering in the growth of other types of microorganisms. This L-glutamic acid containing enrichment broth would be particularly valuable in a rapid microbial detection assay such as an adenosine triphosphate (ATP) bioluminescence assay. By using this new enrichment broth, the amount of ATP (represented as relative light unit ratio after normalized with the negative test control) from mold growth was significantly increased by reducing the time of detection of microbial contamination in a raw ingredient or personal care product formulation from an incubation period of 48-18 h. By using L-glutamic acid in this enrichment broth, the lag phase of the mold growth cycle was shortened. In response to various concentrations of L-glutamic acid in R-TATP broth, there was an increased amount of ATP that had been produced by mold metabolism in an ATP bioluminescence assay. By using L-glutamic acid in R-TATP broth in an ATP bioluminescence assay, the presence of mold could be detected in 18 h as well as other types of microorganisms that may or may not be present in a test sample. By detecting the presence or absence of microbial contamination in 18 h, it is superior in comparison to a 48-96 h incubation period by using either a standard or rapid detection method.</p>","PeriodicalId":15523,"journal":{"name":"Journal of cosmetic science","volume":"69 1","pages":"35-46"},"PeriodicalIF":0.2000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cosmetic science","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The present study reports the effects of adding L-glutamic acid to a new enrichment broth designated as R-TATP broth, to promote the growth of slow-growing mold microorganisms such as Aspergillus brasiliensis and Aspergillus oryzae, without interfering in the growth of other types of microorganisms. This L-glutamic acid containing enrichment broth would be particularly valuable in a rapid microbial detection assay such as an adenosine triphosphate (ATP) bioluminescence assay. By using this new enrichment broth, the amount of ATP (represented as relative light unit ratio after normalized with the negative test control) from mold growth was significantly increased by reducing the time of detection of microbial contamination in a raw ingredient or personal care product formulation from an incubation period of 48-18 h. By using L-glutamic acid in this enrichment broth, the lag phase of the mold growth cycle was shortened. In response to various concentrations of L-glutamic acid in R-TATP broth, there was an increased amount of ATP that had been produced by mold metabolism in an ATP bioluminescence assay. By using L-glutamic acid in R-TATP broth in an ATP bioluminescence assay, the presence of mold could be detected in 18 h as well as other types of microorganisms that may or may not be present in a test sample. By detecting the presence or absence of microbial contamination in 18 h, it is superior in comparison to a 48-96 h incubation period by using either a standard or rapid detection method.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用l -谷氨酸在一种新的富集肉汤(R-TATP肉汤)中使用ATP生物发光法检测原料/个人护理产品配方中霉菌的存在或不存在
本研究报道了将l -谷氨酸添加到一种被称为R-TATP的新型富集肉汤中,在不干扰其他类型微生物生长的情况下,促进巴西曲霉和米曲霉等生长缓慢的霉菌微生物的生长。这种含有l -谷氨酸的浓缩肉汤在快速微生物检测试验中特别有价值,如三磷酸腺苷(ATP)生物发光试验。通过使用这种新的富集菌液,通过减少原料或个人护理产品配方中微生物污染的检测时间,在48-18小时内,通过使用l -谷氨酸,霉菌生长周期的滞后期缩短,霉菌生长的ATP量(用阴性试验对照标准化后的相对光单位比表示)显著增加。在ATP生物发光实验中,对R-TATP肉汤中不同浓度的l -谷氨酸作出反应,霉菌代谢产生的ATP量增加。通过在ATP生物发光试验中使用r - ttp肉汤中的l -谷氨酸,可以在18小时内检测到霉菌的存在以及测试样品中可能存在或不存在的其他类型的微生物。通过在18小时内检测微生物污染的存在与否,与使用标准或快速检测方法进行48-96小时的潜伏期相比,它是优越的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of cosmetic science
Journal of cosmetic science 工程技术-皮肤病学
CiteScore
0.90
自引率
0.00%
发文量
26
期刊介绍: The JOURNAL OF COSMETIC SCIENCE (JCS) publishes papers concerned with cosmetics, cosmetic products, fragrances, their formulation and their effects in skin care or in overall consumer well-being, as well as papers relating to the sciences underlying cosmetics, such as human skin physiology, color physics, physical chemistry of colloids and emulsions, or psychological effects of olfaction in humans. Papers of interest to the cosmetic industry and to the understanding of the cosmetic markets are also welcome for publication.
期刊最新文献
Skin Permeation of Hazardous Compounds of Tobacco Smoke in Presence of Antipollution Cosmetics. Rheology of Cosmetic Products: Surfactant Mesophases, Foams and Emulsions. Application of Biosurfactants and Biopolymers in Sustainable Cosmetic Formulation Design. Detection and Analysis of Ceramide in Skin and Blood in a Healthy Chinese Population. Antibacterial Activity of Senkyunolide A Isolated from Cnidium Officinale Extract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1