Mechanical Validation of an MRI Compatible Stereotactic Neurosurgery Robot in Preparation for Pre-Clinical Trials.

Christopher J Nycz, Radian Gondokaryono, Paulo Carvalho, Nirav Patel, Marek Wartenberg, Julie G Pilitsis, Gregory S Fischer
{"title":"Mechanical Validation of an MRI Compatible Stereotactic Neurosurgery Robot in Preparation for Pre-Clinical Trials.","authors":"Christopher J Nycz, Radian Gondokaryono, Paulo Carvalho, Nirav Patel, Marek Wartenberg, Julie G Pilitsis, Gregory S Fischer","doi":"10.1109/IROS.2017.8205979","DOIUrl":null,"url":null,"abstract":"<p><p>The use of magnetic resonance imaging (MRI) for guiding robotic surgical devices has shown great potential for performing precisely targeted and controlled interventions. To fully realize these benefits, devices must work safely within the tight confines of the MRI bore without negatively impacting image quality. Here we expand on previous work exploring MRI guided robots for neural interventions by presenting the mechanical design and assessment of a device for positioning, orienting, and inserting an interstitial ultrasound-based ablation probe. From our previous work we have added a 2 degree of freedom (DOF) needle driver for use with the aforementioned probe, revised the mechanical design to improve strength and function, and performed an evaluation of the mechanism's accuracy and effect on MR image quality. The result of this work is a 7-DOF MRI robot capable of positioning a needle tip and orienting it's axis with accuracy of 1.37 <i>±</i> 0.06<i>mm</i> and 0.79° <i>±</i> 0.41°, inserting it along it's axis with an accuracy of 0.06 <i>±</i> 0.07<i>mm</i>, and rotating it about it's axis to an accuracy of 0.77° <i>±</i> 1.31°. This was accomplished with no significant reduction in SNR caused by the robot's presence in the MRI bore, ≤ 10.3% reduction in SNR from running the robot's motors during a scan, and no visible paramagnetic artifacts.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2017 ","pages":"1677-1684"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5912942/pdf/nihms959530.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8205979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/12/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of magnetic resonance imaging (MRI) for guiding robotic surgical devices has shown great potential for performing precisely targeted and controlled interventions. To fully realize these benefits, devices must work safely within the tight confines of the MRI bore without negatively impacting image quality. Here we expand on previous work exploring MRI guided robots for neural interventions by presenting the mechanical design and assessment of a device for positioning, orienting, and inserting an interstitial ultrasound-based ablation probe. From our previous work we have added a 2 degree of freedom (DOF) needle driver for use with the aforementioned probe, revised the mechanical design to improve strength and function, and performed an evaluation of the mechanism's accuracy and effect on MR image quality. The result of this work is a 7-DOF MRI robot capable of positioning a needle tip and orienting it's axis with accuracy of 1.37 ± 0.06mm and 0.79° ± 0.41°, inserting it along it's axis with an accuracy of 0.06 ± 0.07mm, and rotating it about it's axis to an accuracy of 0.77° ± 1.31°. This was accomplished with no significant reduction in SNR caused by the robot's presence in the MRI bore, ≤ 10.3% reduction in SNR from running the robot's motors during a scan, and no visible paramagnetic artifacts.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核磁共振成像兼容立体定向神经外科机器人的机械验证,为临床前试验做准备。
使用磁共振成像(MRI)引导机器人手术设备在进行精确定向和控制干预方面显示出巨大的潜力。要充分实现这些优势,设备必须在磁共振成像孔的狭小范围内安全工作,同时不会对图像质量产生负面影响。在此,我们将在之前探索用于神经介入的核磁共振成像引导机器人的基础上,介绍一种用于定位、定向和插入基于间质超声消融探针的设备的机械设计和评估。在之前工作的基础上,我们增加了一个与上述探针配合使用的 2 自由度(DOF)针驱动器,修改了机械设计以提高强度和功能,并对机械装置的准确性和对 MR 图像质量的影响进行了评估。这项工作的成果是一个 7-DOF 核磁共振成像机器人,能够定位针尖并确定其轴线方向,精确度为 1.37 ± 0.06 毫米和 0.79° ± 0.41°,沿其轴线插入的精确度为 0.06 ± 0.07 毫米,围绕其轴线旋转的精确度为 0.77° ± 1.31°。在扫描过程中,机器人电机的运行不会导致信噪比明显降低,信噪比降低幅度不超过 10.3%,也不会出现明显的顺磁伪影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FBG-based Shape-Sensing to Enable Lateral Deflection Methods of Autonomous Needle Insertion. An Energetic Approach to Task-Invariant Ankle Exoskeleton Control. Controlling Powered Prosthesis Kinematics over Continuous Transitions Between Walk and Stair Ascent. Effects of Personalization on Gait-State Tracking Performance Using Extended Kalman Filters. Improving Amputee Endurance over Activities of Daily Living with a Robotic Knee-Ankle Prosthesis: A Case Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1