{"title":"Cortical correlates of amblyopia.","authors":"Lynne Kiorpes, Nigel Daw","doi":"10.1017/S0952523817000232","DOIUrl":null,"url":null,"abstract":"<p><p>There are many levels of disorder in amblyopic vision, from basic acuity and contrast sensitivity loss to abnormal binocular vision and global perception of motion and form. Amblyopia treatment via patching to restore acuity often leaves other aspects of vision deficient. The source for these additional deficits is unclear. Neural correlates of poor binocular function and acuity loss are found in V1 and V2. However, they are generally not sufficient to account for behaviorally measured vision loss. This review summarizes the known cortical correlates of visual deficits found in association with amblyopia, particularly those relevant to binocular vision and higher-order visual processing, in striate and extrastriate cortex. Recommendations for future research address open questions on the role of suppression and oculomotor abnormalities in amblyopic vision, and underexplored mechanisms such as top-down influences on information transmission in the amblyopic brain.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0952523817000232","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0952523817000232","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 30
Abstract
There are many levels of disorder in amblyopic vision, from basic acuity and contrast sensitivity loss to abnormal binocular vision and global perception of motion and form. Amblyopia treatment via patching to restore acuity often leaves other aspects of vision deficient. The source for these additional deficits is unclear. Neural correlates of poor binocular function and acuity loss are found in V1 and V2. However, they are generally not sufficient to account for behaviorally measured vision loss. This review summarizes the known cortical correlates of visual deficits found in association with amblyopia, particularly those relevant to binocular vision and higher-order visual processing, in striate and extrastriate cortex. Recommendations for future research address open questions on the role of suppression and oculomotor abnormalities in amblyopic vision, and underexplored mechanisms such as top-down influences on information transmission in the amblyopic brain.
期刊介绍:
Visual Neuroscience is an international journal devoted to the publication of experimental and theoretical research on biological mechanisms of vision. A major goal of publication is to bring together in one journal a broad range of studies that reflect the diversity and originality of all aspects of neuroscience research relating to the visual system. Contributions may address molecular, cellular or systems-level processes in either vertebrate or invertebrate species. The journal publishes work based on a wide range of technical approaches, including molecular genetics, anatomy, physiology, psychophysics and imaging, and utilizing comparative, developmental, theoretical or computational approaches to understand the biology of vision and visuo-motor control. The journal also publishes research seeking to understand disorders of the visual system and strategies for restoring vision. Studies based exclusively on clinical, psychophysiological or behavioral data are welcomed, provided that they address questions concerning neural mechanisms of vision or provide insight into visual dysfunction.