The mechanistic basis for chromatin regulation by pioneer transcription factors.

IF 7.9 Q1 Medicine Wiley Interdisciplinary Reviews-Systems Biology and Medicine Pub Date : 2019-01-01 Epub Date: 2018-06-27 DOI:10.1002/wsbm.1427
Makiko Iwafuchi-Doi
{"title":"The mechanistic basis for chromatin regulation by pioneer transcription factors.","authors":"Makiko Iwafuchi-Doi","doi":"10.1002/wsbm.1427","DOIUrl":null,"url":null,"abstract":"<p><p>Pioneer transcription factors play a primary role in establishing competence for gene expression and initiating cellular programming and reprogramming, and their dysregulation causes severe effects on human health, such as promoting tumorigenesis. Although more than 200 transcription factors are expressed in each cell type, only a small number of transcription factors are necessary to elicit dramatic cell-fate changes in embryonic development and cell-fate conversion. Among these key transcription factors, a subset called \"pioneer transcription factors\" have a remarkable ability to target nucleosomal DNA, or closed chromatin, early in development, often leading to the local opening of chromatin, thereby establishing competence for gene expression. Although more key transcription factors have been identified as pioneer transcription factors, the molecular mechanisms behind their special properties are only beginning to be revealed. Understanding the pioneering mechanisms will enhance our ability to precisely control cell fate at will for research and therapeutic purposes. This article is categorized under: Biological Mechanisms > Cell Fates Biological Mechanisms > Regulatory Biology Developmental Biology > Lineages.</p>","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wsbm.1427","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 58

Abstract

Pioneer transcription factors play a primary role in establishing competence for gene expression and initiating cellular programming and reprogramming, and their dysregulation causes severe effects on human health, such as promoting tumorigenesis. Although more than 200 transcription factors are expressed in each cell type, only a small number of transcription factors are necessary to elicit dramatic cell-fate changes in embryonic development and cell-fate conversion. Among these key transcription factors, a subset called "pioneer transcription factors" have a remarkable ability to target nucleosomal DNA, or closed chromatin, early in development, often leading to the local opening of chromatin, thereby establishing competence for gene expression. Although more key transcription factors have been identified as pioneer transcription factors, the molecular mechanisms behind their special properties are only beginning to be revealed. Understanding the pioneering mechanisms will enhance our ability to precisely control cell fate at will for research and therapeutic purposes. This article is categorized under: Biological Mechanisms > Cell Fates Biological Mechanisms > Regulatory Biology Developmental Biology > Lineages.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
先驱转录因子调控染色质的机制基础。
先锋转录因子在建立基因表达能力和启动细胞编程和重编程中起主要作用,其失调对人类健康造成严重影响,如促进肿瘤发生。尽管在每种细胞类型中表达超过200个转录因子,但在胚胎发育和细胞命运转化过程中,只需要少数转录因子就能引起细胞命运的剧烈变化。在这些关键转录因子中,一个被称为“先锋转录因子”的亚群在发育早期靶向核小体DNA或封闭染色质的能力显著,通常导致染色质的局部打开,从而建立基因表达能力。虽然更多的关键转录因子已被确定为先锋转录因子,但其特殊性质背后的分子机制才刚刚开始揭示。了解这些开创性的机制将增强我们在研究和治疗目的上精确控制细胞命运的能力。本文分类如下:生物学机制>细胞命运>生物学机制>调控生物学>发育生物学>谱系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
18.40
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine Focus: Strong interdisciplinary focus Serves as an encyclopedic reference for systems biology research Conceptual Framework: Systems biology asserts the study of organisms as hierarchical systems or networks Individual biological components interact in complex ways within these systems Article Coverage: Discusses biology, methods, and models Spans systems from a few molecules to whole species Topical Coverage: Developmental Biology Physiology Biological Mechanisms Models of Systems, Properties, and Processes Laboratory Methods and Technologies Translational, Genomic, and Systems Medicine
期刊最新文献
Tools for computational analysis of moving boundary problems in cellular mechanobiology. Cellular reprogramming: Mathematics meets medicine. Thermoregulation: A journey from physiology to computational models and the intensive care unit. Mammalian cell and tissue imaging using Raman and coherent Raman microscopy. Computational models to explore the complexity of the epithelial to mesenchymal transition in cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1