Near-infrared spectroscopy muscle oximetry of patients with postural orthostatic tachycardia syndrome.

IF 2.3 3区 医学 Q2 OPTICS Journal of Innovative Optical Health Sciences Pub Date : 2018-09-01 Epub Date: 2018-08-13 DOI:10.1142/S1793545818500268
Parvathi Kadamati, Jeffrey J Sugar, Brendan J Quirk, Shima Mehrvar, Gisela G Chelimsky, Harry T Whelan, Thomas C Chelimsky, Mahsa Ranji
{"title":"Near-infrared spectroscopy muscle oximetry of patients with postural orthostatic tachycardia syndrome.","authors":"Parvathi Kadamati, Jeffrey J Sugar, Brendan J Quirk, Shima Mehrvar, Gisela G Chelimsky, Harry T Whelan, Thomas C Chelimsky, Mahsa Ranji","doi":"10.1142/S1793545818500268","DOIUrl":null,"url":null,"abstract":"<p><p>Postural orthostatic tachycardia syndrome (POTS) is a disabling condition characterized by orthostatic intolerance with tachycardia in the absence of drop-in blood pressure. A custom-built near-infrared spectroscopy device (NIRS) is applied to monitor the muscle oxygenation, noninvasively in patients undergoing incremental head-up tilt table (HUT). Subjects (6 POTS patients and 6 healthy controls) underwent 30 mins of 70°on a HUT. The results showed a significant difference in deoxyhemoglobin (Hb), change-in-oxygenation (ΔOxy) and blood volume (ΔBV) between patients and healthy controls. However, oxyhemoglobin (HbO<sub>2</sub>) showed a significantly faster rate of change in the healthy controls during the first 10 mins of the tilt and during the recovery. This NIRS muscle oximetry tool provides quantitative measurements of blood oxygenation monitoring in diseases such as POTS.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"11 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6124683/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovative Optical Health Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1142/S1793545818500268","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/8/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Postural orthostatic tachycardia syndrome (POTS) is a disabling condition characterized by orthostatic intolerance with tachycardia in the absence of drop-in blood pressure. A custom-built near-infrared spectroscopy device (NIRS) is applied to monitor the muscle oxygenation, noninvasively in patients undergoing incremental head-up tilt table (HUT). Subjects (6 POTS patients and 6 healthy controls) underwent 30 mins of 70°on a HUT. The results showed a significant difference in deoxyhemoglobin (Hb), change-in-oxygenation (ΔOxy) and blood volume (ΔBV) between patients and healthy controls. However, oxyhemoglobin (HbO2) showed a significantly faster rate of change in the healthy controls during the first 10 mins of the tilt and during the recovery. This NIRS muscle oximetry tool provides quantitative measurements of blood oxygenation monitoring in diseases such as POTS.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体位性直立性心动过速综合征患者的近红外光谱肌肉血氧测定。
体位性直立性心动过速综合征(POTS)是一种致残性疾病,其特征是在血压没有下降的情况下,直立性不耐受伴心动过速。一种定制的近红外光谱设备(NIRS)用于无创监测接受递增式抬头倾斜台(HUT)的患者的肌肉氧合。受试者(6名POTS患者和6名健康对照)在HUT上接受了30分钟70°的治疗。结果显示,患者与健康对照组在脱氧血红蛋白(Hb)、氧合变化(ΔOxy)和血容量(ΔBV)方面存在显著差异。然而,在倾斜的前10分钟和恢复期间,健康对照组的氧合血红蛋白(HbO2)显示出明显更快的变化率。这种NIRS肌肉血氧测定工具提供了对POTS等疾病血氧监测的定量测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Innovative Optical Health Sciences
Journal of Innovative Optical Health Sciences OPTICS-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
4.50
自引率
20.00%
发文量
69
审稿时长
>12 weeks
期刊介绍: JIOHS serves as an international forum for the publication of the latest developments in all areas of photonics in biology and medicine. JIOHS will consider for publication original papers in all disciplines of photonics in biology and medicine, including but not limited to: -Photonic therapeutics and diagnostics- Optical clinical technologies and systems- Tissue optics- Laser-tissue interaction and tissue engineering- Biomedical spectroscopy- Advanced microscopy and imaging- Nanobiophotonics and optical molecular imaging- Multimodal and hybrid biomedical imaging- Micro/nanofabrication- Medical microsystems- Optical coherence tomography- Photodynamic therapy. JIOHS provides a vehicle to help professionals, graduates, engineers, academics and researchers working in the field of intelligent photonics in biology and medicine to disseminate information on the state-of-the-art technique.
期刊最新文献
Label-free in-vivo classification and tracking of red blood cells and platelets using Dynamic-YOLOv4 network Unified deep learning model for predicting fundus fluorescein angiography image from fundus structure image Review of polarization-based technology for biomedical applications Spatial sensitivity to absorption changes for various near-infrared spectroscopy methods: A compendium review Distal-scanning common path probe for optical coherence tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1