Recent advancement of light-based single-molecule approaches for studying biomolecules.

IF 7.9 Q1 Medicine Wiley Interdisciplinary Reviews-Systems Biology and Medicine Pub Date : 2019-07-01 Epub Date: 2019-02-06 DOI:10.1002/wsbm.1445
Benjamin Croop, Chenyi Zhang, Youngbin Lim, Ryan M Gelfand, Kyu Young Han
{"title":"Recent advancement of light-based single-molecule approaches for studying biomolecules.","authors":"Benjamin Croop,&nbsp;Chenyi Zhang,&nbsp;Youngbin Lim,&nbsp;Ryan M Gelfand,&nbsp;Kyu Young Han","doi":"10.1002/wsbm.1445","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in single-molecule techniques have led to new discoveries in analytical chemistry, biophysics, and medicine. Understanding the structure and behavior of single biomolecules provides a wealth of information compared to studying large ensembles. However, developing single-molecule techniques is challenging and requires advances in optics, engineering, biology, and chemistry. In this paper, we will review the state of the art in single-molecule applications with a focus over the last few years of development. The advancements covered will mainly include light-based in vitro methods, and we will discuss the fundamentals of each with a focus on the platforms themselves. We will also summarize their limitations and current and future applications to the wider biological and chemical fields. This article is categorized under: Laboratory Methods and Technologies > Imaging Laboratory Methods and Technologies > Macromolecular Interactions, Methods Analytical and Computational Methods > Analytical Methods.</p>","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":"11 4","pages":"e1445"},"PeriodicalIF":7.9000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wsbm.1445","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/2/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3

Abstract

Recent advances in single-molecule techniques have led to new discoveries in analytical chemistry, biophysics, and medicine. Understanding the structure and behavior of single biomolecules provides a wealth of information compared to studying large ensembles. However, developing single-molecule techniques is challenging and requires advances in optics, engineering, biology, and chemistry. In this paper, we will review the state of the art in single-molecule applications with a focus over the last few years of development. The advancements covered will mainly include light-based in vitro methods, and we will discuss the fundamentals of each with a focus on the platforms themselves. We will also summarize their limitations and current and future applications to the wider biological and chemical fields. This article is categorized under: Laboratory Methods and Technologies > Imaging Laboratory Methods and Technologies > Macromolecular Interactions, Methods Analytical and Computational Methods > Analytical Methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光的单分子方法研究生物分子的最新进展。
单分子技术的最新进展导致了分析化学、生物物理学和医学的新发现。了解单个生物分子的结构和行为提供了丰富的信息相比,研究大的集合。然而,开发单分子技术是具有挑战性的,需要在光学、工程、生物学和化学方面取得进展。在本文中,我们将回顾单分子应用的最新进展,重点介绍近年来的发展。所涵盖的进步将主要包括基于光的体外方法,我们将重点讨论每个平台本身的基础知识。我们还将总结它们的局限性以及目前和未来在更广泛的生物和化学领域的应用。本文分类如下:实验室方法与技术>成像实验室方法与技术>大分子相互作用、方法、分析与计算方法>分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
18.40
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine Focus: Strong interdisciplinary focus Serves as an encyclopedic reference for systems biology research Conceptual Framework: Systems biology asserts the study of organisms as hierarchical systems or networks Individual biological components interact in complex ways within these systems Article Coverage: Discusses biology, methods, and models Spans systems from a few molecules to whole species Topical Coverage: Developmental Biology Physiology Biological Mechanisms Models of Systems, Properties, and Processes Laboratory Methods and Technologies Translational, Genomic, and Systems Medicine
期刊最新文献
Tools for computational analysis of moving boundary problems in cellular mechanobiology. Cellular reprogramming: Mathematics meets medicine. Thermoregulation: A journey from physiology to computational models and the intensive care unit. Mammalian cell and tissue imaging using Raman and coherent Raman microscopy. Computational models to explore the complexity of the epithelial to mesenchymal transition in cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1