Selene Velez, Sarah Heether, Jung-Mei Tien, Farahdia Edouard
{"title":"Applying Light Scattering Theory to Measure Rinsability of Hair Conditioners.","authors":"Selene Velez, Sarah Heether, Jung-Mei Tien, Farahdia Edouard","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>As the world is striving to become more sustainable, water consumption is considered an important area of focus, especially in those regions with limited freshwater resources. To address this issue, the personal care industry has identified faster rinsability of hair care products as a way to contribute to water preservation efforts. To understand rinsability, analysis of colloidal systems and an investigation into concentration of whole products in water is critical. However, particle size and particle migration in colloidal systems require the use of specialized optical methods. In previous research, we learned that conditioners form colloidal particles rather than true solutions during the rinsing process, and hence cannot be studied using ultraviolet-visible spectroscopy. Through this study, a Turbiscan instrument was determined to have the capability of measuring multiple light scattering given off by conditioner systems. Therefore, measurements of light scatter from a series of diluted conditioner dispersions can be used to generate a calibration curve to calculate unknown concentrations of conditioner in rinse water at different rinsing time intervals. The newly developed test method was successfully applied to determine the rinsability of various conditioner formulations on both virgin and bleached hair. The findings of our study will be presented here.</p>","PeriodicalId":15523,"journal":{"name":"Journal of cosmetic science","volume":"69 5","pages":"397-405"},"PeriodicalIF":0.2000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cosmetic science","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
As the world is striving to become more sustainable, water consumption is considered an important area of focus, especially in those regions with limited freshwater resources. To address this issue, the personal care industry has identified faster rinsability of hair care products as a way to contribute to water preservation efforts. To understand rinsability, analysis of colloidal systems and an investigation into concentration of whole products in water is critical. However, particle size and particle migration in colloidal systems require the use of specialized optical methods. In previous research, we learned that conditioners form colloidal particles rather than true solutions during the rinsing process, and hence cannot be studied using ultraviolet-visible spectroscopy. Through this study, a Turbiscan instrument was determined to have the capability of measuring multiple light scattering given off by conditioner systems. Therefore, measurements of light scatter from a series of diluted conditioner dispersions can be used to generate a calibration curve to calculate unknown concentrations of conditioner in rinse water at different rinsing time intervals. The newly developed test method was successfully applied to determine the rinsability of various conditioner formulations on both virgin and bleached hair. The findings of our study will be presented here.
期刊介绍:
The JOURNAL OF COSMETIC SCIENCE (JCS) publishes papers concerned with cosmetics, cosmetic products, fragrances, their formulation and their effects in skin care or in overall consumer well-being, as well as papers relating to the sciences underlying cosmetics, such as human skin physiology, color physics, physical chemistry of colloids and emulsions, or psychological effects of olfaction in humans. Papers of interest to the cosmetic industry and to the understanding of the cosmetic markets are also welcome for publication.