Yuya Onodera, Rino Ichikawa, Kanta Terao, Hiromu Tanimoto, Nobuhiro Yamagata
{"title":"Courtship behavior induced by appetitive olfactory memory.","authors":"Yuya Onodera, Rino Ichikawa, Kanta Terao, Hiromu Tanimoto, Nobuhiro Yamagata","doi":"10.1080/01677063.2019.1593978","DOIUrl":null,"url":null,"abstract":"<p><p>Reinforcement signals such as food reward and noxious punishment can change diverse behaviors. This holds true in fruit flies, <i>Drosophila melanogaster</i>, which can be conditioned by an odor and sugar reward or electric shock punishment. Despite a wide variety of behavior modulated by learning, conditioned responses have been traditionally measured by altered odor preference in a choice, and other memory-guided behaviors have been only scarcely investigated. Here, we analyzed detailed conditioned odor responses of flies after sugar associative learning by employing a video recording and semi-automated processing pipeline. Trajectory analyses revealed that multiple behavioral components were altered along with conditioned approach to the rewarded odor. Notably, we found that lateral wing extension, a hallmark of courtship behavior of <i>D. melanogaster</i>, was robustly increased specifically in the presence of the rewarded odor. Strikingly, genetic disruption of the mushroom body output did not impair conditioned courtship increase, while markedly weakening conditioned odor approach. Our results highlight the complexity of conditioned responses and their distinct regulatory mechanisms that may underlie coordinated yet complex memory-guided behaviors in flies.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":"33 2","pages":"143-151"},"PeriodicalIF":1.8000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01677063.2019.1593978","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01677063.2019.1593978","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/4/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 3
Abstract
Reinforcement signals such as food reward and noxious punishment can change diverse behaviors. This holds true in fruit flies, Drosophila melanogaster, which can be conditioned by an odor and sugar reward or electric shock punishment. Despite a wide variety of behavior modulated by learning, conditioned responses have been traditionally measured by altered odor preference in a choice, and other memory-guided behaviors have been only scarcely investigated. Here, we analyzed detailed conditioned odor responses of flies after sugar associative learning by employing a video recording and semi-automated processing pipeline. Trajectory analyses revealed that multiple behavioral components were altered along with conditioned approach to the rewarded odor. Notably, we found that lateral wing extension, a hallmark of courtship behavior of D. melanogaster, was robustly increased specifically in the presence of the rewarded odor. Strikingly, genetic disruption of the mushroom body output did not impair conditioned courtship increase, while markedly weakening conditioned odor approach. Our results highlight the complexity of conditioned responses and their distinct regulatory mechanisms that may underlie coordinated yet complex memory-guided behaviors in flies.
期刊介绍:
The Journal is appropriate for papers on behavioral, biochemical, or cellular aspects of neural function, plasticity, aging or disease. In addition to analyses in the traditional genetic-model organisms, C. elegans, Drosophila, mouse and the zebrafish, the Journal encourages submission of neurogenetic investigations performed in organisms not easily amenable to experimental genetics. Such investigations might, for instance, describe behavioral differences deriving from genetic variation within a species, or report human disease studies that provide exceptional insights into biological mechanisms