The Effect of Calcium and Glucose Concentration on Corneal Epithelial Cell Lines Differentiation, Proliferation, and Focal Adhesion Expression.

Q2 Biochemistry, Genetics and Molecular Biology BioResearch Open Access Pub Date : 2019-06-05 eCollection Date: 2019-01-01 DOI:10.1089/biores.2018.0036
Sophia Masterton, Mark Ahearne
{"title":"The Effect of Calcium and Glucose Concentration on Corneal Epithelial Cell Lines Differentiation, Proliferation, and Focal Adhesion Expression.","authors":"Sophia Masterton,&nbsp;Mark Ahearne","doi":"10.1089/biores.2018.0036","DOIUrl":null,"url":null,"abstract":"<p><p>It is known that culture media composition can affect cell behavior, morphology, and gene expression. However, in the case of corneal epithelial cells, the combined role of calcium and glucose concentration in media has not previously been examined. In this study, a human immortalized corneal epithelial cell line was used to examine the effect of glucose and calcium concentrations on these cells. Cell metabolic activity, cell growth curve analysis, and relative gene and protein expression of proliferative marker extracellular related kinase (ERK) were used to study proliferation. Corneal epithelial stem cell marker NP63 and mature epithelial marker cytokeratin 3 (CK3) were analyzed by using reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemistry. Focal adhesions were examined by using immunocytochemistry. Cells cultured in both low-glucose, high-calcium (LG-HC) media and high-glucose, low-calcium (HG-LC) media showed similar results in both RT-PCR and immunocytochemistry analysis. NP63 expression was significantly lower and CK3 expression was higher in these groups compared with cells cultured in commercial media. NP63 and CK3 expression was also analyzed by using immunocytochemistry, which confirmed these findings. The high-glucose, high-calcium-fed cells showed the lowest expression of all markers and no gene expression of CK3. This was deemed the most unsuitable media formulation for this cell line. Focal adhesion expression was the lowest in the high-calcium, high-glucose-fed cells, with the most even distribution of this among the commercial media group. Overall, this study showed that varying glucose and calcium concentrations can have significant effects on differentiation, proliferation, focal adhesions, and metabolic activity of this cell line. It seems that an LG-HC and HG-LC formulation were interchangeable with similar proliferative and differentiation effects.</p>","PeriodicalId":9100,"journal":{"name":"BioResearch Open Access","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/biores.2018.0036","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioResearch Open Access","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/biores.2018.0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 6

Abstract

It is known that culture media composition can affect cell behavior, morphology, and gene expression. However, in the case of corneal epithelial cells, the combined role of calcium and glucose concentration in media has not previously been examined. In this study, a human immortalized corneal epithelial cell line was used to examine the effect of glucose and calcium concentrations on these cells. Cell metabolic activity, cell growth curve analysis, and relative gene and protein expression of proliferative marker extracellular related kinase (ERK) were used to study proliferation. Corneal epithelial stem cell marker NP63 and mature epithelial marker cytokeratin 3 (CK3) were analyzed by using reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemistry. Focal adhesions were examined by using immunocytochemistry. Cells cultured in both low-glucose, high-calcium (LG-HC) media and high-glucose, low-calcium (HG-LC) media showed similar results in both RT-PCR and immunocytochemistry analysis. NP63 expression was significantly lower and CK3 expression was higher in these groups compared with cells cultured in commercial media. NP63 and CK3 expression was also analyzed by using immunocytochemistry, which confirmed these findings. The high-glucose, high-calcium-fed cells showed the lowest expression of all markers and no gene expression of CK3. This was deemed the most unsuitable media formulation for this cell line. Focal adhesion expression was the lowest in the high-calcium, high-glucose-fed cells, with the most even distribution of this among the commercial media group. Overall, this study showed that varying glucose and calcium concentrations can have significant effects on differentiation, proliferation, focal adhesions, and metabolic activity of this cell line. It seems that an LG-HC and HG-LC formulation were interchangeable with similar proliferative and differentiation effects.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钙和葡萄糖浓度对角膜上皮细胞系分化、增殖和局灶黏附表达的影响。
众所周知,培养基成分可以影响细胞行为、形态和基因表达。然而,在角膜上皮细胞的情况下,培养基中钙和葡萄糖浓度的联合作用以前没有被研究过。在这项研究中,我们用一个人永生化角膜上皮细胞系来研究葡萄糖和钙浓度对这些细胞的影响。通过细胞代谢活性、细胞生长曲线分析和增殖标志物细胞外相关激酶(ERK)相关基因和蛋白表达来研究细胞增殖。采用逆转录聚合酶链反应(RT-PCR)和免疫细胞化学方法对角膜上皮干细胞标志物NP63和成熟上皮标志物细胞角蛋白3 (CK3)进行分析。免疫细胞化学检测局灶性粘连。在低糖高钙(LG-HC)培养基和高糖低钙(HG-LC)培养基中培养的细胞在RT-PCR和免疫细胞化学分析中显示相似的结果。与商业培养基中培养的细胞相比,NP63的表达显著降低,CK3的表达显著升高。通过免疫细胞化学分析NP63和CK3的表达,证实了上述发现。高糖、高钙喂养的细胞各项标志物表达最低,CK3基因无表达。这被认为是最不适合这个细胞系的培养基配方。高钙、高糖喂养的细胞局灶黏附表达最低,商业培养基组的局灶黏附表达最均匀。总之,本研究表明,不同的葡萄糖和钙浓度对该细胞系的分化、增殖、局灶黏附和代谢活性有显著影响。LG-HC和HG-LC制剂可互换使用,具有相似的增殖和分化作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BioResearch Open Access
BioResearch Open Access Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
自引率
0.00%
发文量
1
期刊介绍: BioResearch Open Access is a high-quality open access journal providing peer-reviewed research on a broad range of scientific topics, including molecular and cellular biology, tissue engineering, regenerative medicine, stem cells, gene therapy, systems biology, genetics, virology, and neuroscience. The Journal publishes basic science and translational research in the form of original research articles, comprehensive review articles, mini-reviews, rapid communications, brief reports, technology reports, hypothesis articles, perspectives, and letters to the editor.
期刊最新文献
An Innovative Physical Therapy Intervention for Chronic Pain Management and Opioid Reduction Among People Living with HIV. Characterization of Laminins in Healthy Human Aortic Valves and a Modified Decellularized Rat Scaffold. Why Do We Need Serological Tests for Severe Acute Respiratory Syndrome Coronavirus-2 Diagnosis? Immunotherapy for Infarcts: In Vivo Postinfarction Macrophage Modulation Using Intramyocardial Microparticle Delivery of Map4k4 Small Interfering RNA. Comparative Evaluation of the Effects of Consumption of Colombian Agraz (Vaccinium meridionale Swartz) on Insulin Resistance, Antioxidant Capacity, and Markers of Oxidation and Inflammation, Between Men and Women with Metabolic Syndrome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1