Viktoria Rungelrath, Scott D Kobayashi, Frank R DeLeo
{"title":"Neutrophils in innate immunity and systems biology-level approaches.","authors":"Viktoria Rungelrath, Scott D Kobayashi, Frank R DeLeo","doi":"10.1002/wsbm.1458","DOIUrl":null,"url":null,"abstract":"<p><p>The innate immune system is the first line of host defense against invading microorganisms. Polymorphonuclear leukocytes (PMNs or neutrophils) are the most abundant leukocyte in humans and essential to the innate immune response against invading pathogens. Compared to the acquired immune response, which requires time to develop and is dependent on previous interaction with specific microbes, the ability of neutrophils to kill microorganisms is immediate, nonspecific, and not dependent on previous exposure to microorganisms. Historically, studies of PMN-pathogen interaction focused on the events leading to killing of microorganisms, such as recruitment/chemotaxis, transmigration, phagocytosis, and activation, whereas postphagocytosis sequelae were infrequently considered. In addition, it was widely accepted that human neutrophils possessed limited capacity for new gene transcription and thus, relatively little biosynthetic capacity. This notion has changed dramatically within the past 20 years. Further, there is now more effort directed to understand the events occurring in PMNs after killing of microbes. Herein, we give an updated review of the systems biology-level approaches that have been used to gain an enhanced view of the role of neutrophils during host-pathogen interaction and neutrophil-mediated diseases. We anticipate that these and future systems-level studies will continue to provide information important for understanding, treatment, and control of diseases caused by pathogenic microorganisms. This article is categorized under: Physiology > Organismal Responses to Environment Physiology > Mammalian Physiology in Health and Disease Biological Mechanisms > Cell Fates.</p>","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wsbm.1458","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/6/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 28
Abstract
The innate immune system is the first line of host defense against invading microorganisms. Polymorphonuclear leukocytes (PMNs or neutrophils) are the most abundant leukocyte in humans and essential to the innate immune response against invading pathogens. Compared to the acquired immune response, which requires time to develop and is dependent on previous interaction with specific microbes, the ability of neutrophils to kill microorganisms is immediate, nonspecific, and not dependent on previous exposure to microorganisms. Historically, studies of PMN-pathogen interaction focused on the events leading to killing of microorganisms, such as recruitment/chemotaxis, transmigration, phagocytosis, and activation, whereas postphagocytosis sequelae were infrequently considered. In addition, it was widely accepted that human neutrophils possessed limited capacity for new gene transcription and thus, relatively little biosynthetic capacity. This notion has changed dramatically within the past 20 years. Further, there is now more effort directed to understand the events occurring in PMNs after killing of microbes. Herein, we give an updated review of the systems biology-level approaches that have been used to gain an enhanced view of the role of neutrophils during host-pathogen interaction and neutrophil-mediated diseases. We anticipate that these and future systems-level studies will continue to provide information important for understanding, treatment, and control of diseases caused by pathogenic microorganisms. This article is categorized under: Physiology > Organismal Responses to Environment Physiology > Mammalian Physiology in Health and Disease Biological Mechanisms > Cell Fates.
期刊介绍:
Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine
Focus:
Strong interdisciplinary focus
Serves as an encyclopedic reference for systems biology research
Conceptual Framework:
Systems biology asserts the study of organisms as hierarchical systems or networks
Individual biological components interact in complex ways within these systems
Article Coverage:
Discusses biology, methods, and models
Spans systems from a few molecules to whole species
Topical Coverage:
Developmental Biology
Physiology
Biological Mechanisms
Models of Systems, Properties, and Processes
Laboratory Methods and Technologies
Translational, Genomic, and Systems Medicine