{"title":"A Memory- and Accuracy-Aware Gaussian Parameter-Based Stereo Matching Using Confidence Measure.","authors":"Yeongmin Lee, Chong-Min Kyung","doi":"10.1109/TPAMI.2019.2959613","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate stereo matching requires a large amount of memory at a high bandwidth, which restricts its use in resource-limited systems such as mobile devices. This problem is compounded by the recent trend of applications requiring significantly high pixel resolution and disparity levels. To alleviate this, we present a memory-efficient and robust stereo matching algorithm. For cost aggregation, we employ the semiglobal parametric approach, which significantly reduces the memory bandwidth by representing the costs of all disparities as a Gaussian mixture model. All costs on multiple paths in an image are aggregated by updating the Gaussian parameters. The aggregation is performed during the scanning in the forward and backward directions. To reduce the amount of memory for the intermediate results during the forward scan, we suggest to store only the Gaussian parameters which contribute significantly to the final disparity selection. We also propose a method to enhance the overall procedure through a learning-based confidence measure. The random forest framework is used to train various features which are extracted from the cost and intensity profile. The experimental results on KITTI dataset show that the proposed method reduces the memory requirement to less than 3 percent of that of semiglobal matching (SGM) while providing a robust depth map compared to those of state-of-the-art SGM-based algorithms.</p>","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"43 6","pages":"1845-1858"},"PeriodicalIF":20.8000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TPAMI.2019.2959613","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Pattern Analysis and Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TPAMI.2019.2959613","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3
Abstract
Accurate stereo matching requires a large amount of memory at a high bandwidth, which restricts its use in resource-limited systems such as mobile devices. This problem is compounded by the recent trend of applications requiring significantly high pixel resolution and disparity levels. To alleviate this, we present a memory-efficient and robust stereo matching algorithm. For cost aggregation, we employ the semiglobal parametric approach, which significantly reduces the memory bandwidth by representing the costs of all disparities as a Gaussian mixture model. All costs on multiple paths in an image are aggregated by updating the Gaussian parameters. The aggregation is performed during the scanning in the forward and backward directions. To reduce the amount of memory for the intermediate results during the forward scan, we suggest to store only the Gaussian parameters which contribute significantly to the final disparity selection. We also propose a method to enhance the overall procedure through a learning-based confidence measure. The random forest framework is used to train various features which are extracted from the cost and intensity profile. The experimental results on KITTI dataset show that the proposed method reduces the memory requirement to less than 3 percent of that of semiglobal matching (SGM) while providing a robust depth map compared to those of state-of-the-art SGM-based algorithms.
期刊介绍:
The IEEE Transactions on Pattern Analysis and Machine Intelligence publishes articles on all traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence, with a particular emphasis on machine learning for pattern analysis. Areas such as techniques for visual search, document and handwriting analysis, medical image analysis, video and image sequence analysis, content-based retrieval of image and video, face and gesture recognition and relevant specialized hardware and/or software architectures are also covered.