首页 > 最新文献

IEEE Transactions on Pattern Analysis and Machine Intelligence最新文献

英文 中文
Hyperbolic Kernel Graph Neural Networks for Neurocognitive Decline Analysis from Multimodal Brain Imaging 基于多模态脑成像的神经认知衰退分析的双曲核图神经网络
IF 23.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-19 DOI: 10.1109/tpami.2025.3646188
Meimei Yang, Yongheng Sun, Qianqian Wang, Andrea Bozoki, Maureen Kohi, Mingxia Liu
{"title":"Hyperbolic Kernel Graph Neural Networks for Neurocognitive Decline Analysis from Multimodal Brain Imaging","authors":"Meimei Yang, Yongheng Sun, Qianqian Wang, Andrea Bozoki, Maureen Kohi, Mingxia Liu","doi":"10.1109/tpami.2025.3646188","DOIUrl":"https://doi.org/10.1109/tpami.2025.3646188","url":null,"abstract":"","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"41 1","pages":""},"PeriodicalIF":23.6,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145785058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complexity Control Facilitates Reasoning-Based Compositional Generalization in Transformers 复杂性控制促进了基于推理的变压器组成概化
IF 23.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-19 DOI: 10.1109/tpami.2025.3646483
Zhongwang Zhang, Pengxiao Lin, Zhiwei Wang, Yaoyu Zhang, Zhi-Qin John Xu
{"title":"Complexity Control Facilitates Reasoning-Based Compositional Generalization in Transformers","authors":"Zhongwang Zhang, Pengxiao Lin, Zhiwei Wang, Yaoyu Zhang, Zhi-Qin John Xu","doi":"10.1109/tpami.2025.3646483","DOIUrl":"https://doi.org/10.1109/tpami.2025.3646483","url":null,"abstract":"","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"43 1","pages":""},"PeriodicalIF":23.6,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145785065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DSwinIR: Rethinking Window-Based Attention for Image Restoration DSwinIR:重新思考基于windows的图像恢复注意
IF 23.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-19 DOI: 10.1109/tpami.2025.3646016
Gang Wu, Junjun Jiang, Kui Jiang, Xianming Liu, Liqiang Nie
{"title":"DSwinIR: Rethinking Window-Based Attention for Image Restoration","authors":"Gang Wu, Junjun Jiang, Kui Jiang, Xianming Liu, Liqiang Nie","doi":"10.1109/tpami.2025.3646016","DOIUrl":"https://doi.org/10.1109/tpami.2025.3646016","url":null,"abstract":"","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"171 1","pages":""},"PeriodicalIF":23.6,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145785057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breaking the Multi-Enhancement Bottleneck: Domain-Consistent Quality Enhancement for Compressed Images 突破多重增强瓶颈:压缩图像的域一致质量增强
IF 23.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-19 DOI: 10.1109/tpami.2025.3646223
Qunliang Xing, Ce Zheng, Mai Xu, Jing Yang, Shengxi Li
{"title":"Breaking the Multi-Enhancement Bottleneck: Domain-Consistent Quality Enhancement for Compressed Images","authors":"Qunliang Xing, Ce Zheng, Mai Xu, Jing Yang, Shengxi Li","doi":"10.1109/tpami.2025.3646223","DOIUrl":"https://doi.org/10.1109/tpami.2025.3646223","url":null,"abstract":"","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"17 1","pages":""},"PeriodicalIF":23.6,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145785056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The CUR Decomposition of Self-Attention Matrices in Vision Transformers 视觉变压器中自注意矩阵的CUR分解
IF 23.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-19 DOI: 10.1109/tpami.2025.3646452
Chong Wu, Maolin Che, Hong Yan
{"title":"The CUR Decomposition of Self-Attention Matrices in Vision Transformers","authors":"Chong Wu, Maolin Che, Hong Yan","doi":"10.1109/tpami.2025.3646452","DOIUrl":"https://doi.org/10.1109/tpami.2025.3646452","url":null,"abstract":"","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"19 1","pages":""},"PeriodicalIF":23.6,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145785064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controllable Generation with Text-to-Image Diffusion Models: a Survey 文本到图像扩散模型的可控生成:综述
IF 23.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-19 DOI: 10.1109/tpami.2025.3646548
Pu Cao, Feng Zhou, Qing Song, Lu Yang
{"title":"Controllable Generation with Text-to-Image Diffusion Models: a Survey","authors":"Pu Cao, Feng Zhou, Qing Song, Lu Yang","doi":"10.1109/tpami.2025.3646548","DOIUrl":"https://doi.org/10.1109/tpami.2025.3646548","url":null,"abstract":"","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"22 1","pages":""},"PeriodicalIF":23.6,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145785066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noisy Correspondence Rectification in Multimodal Clustering Space for Cross-Modal Matching 面向跨模态匹配的多模态聚类空间噪声对应校正
IF 23.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-19 DOI: 10.1109/tpami.2025.3646184
Shuo Yang, Yancheng Long, Yujie Wei, Zeke Xie, Hongxun Yao, Min Xu, Liqiang Nie
{"title":"Noisy Correspondence Rectification in Multimodal Clustering Space for Cross-Modal Matching","authors":"Shuo Yang, Yancheng Long, Yujie Wei, Zeke Xie, Hongxun Yao, Min Xu, Liqiang Nie","doi":"10.1109/tpami.2025.3646184","DOIUrl":"https://doi.org/10.1109/tpami.2025.3646184","url":null,"abstract":"","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"111 1","pages":""},"PeriodicalIF":23.6,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145785061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Scene Modeling Via Structure-Aware and Region-Prioritized 3D Gaussians 基于结构感知和区域优先的三维高斯模型的高效场景建模
IF 23.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-19 DOI: 10.1109/tpami.2025.3646473
Guangchi Fang, Bing Wang
{"title":"Efficient Scene Modeling Via Structure-Aware and Region-Prioritized 3D Gaussians","authors":"Guangchi Fang, Bing Wang","doi":"10.1109/tpami.2025.3646473","DOIUrl":"https://doi.org/10.1109/tpami.2025.3646473","url":null,"abstract":"","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"17 1","pages":""},"PeriodicalIF":23.6,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145785063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Condition-Guided Diffusion for Multi-Modal Pedestrian Trajectory Prediction Incorporating Intention and Interaction Priors. 结合意向和交互先验的条件引导扩散多模式行人轨迹预测。
IF 23.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-18 DOI: 10.1109/tpami.2025.3645918
Yanghong Liu,Xingping Dong,Yutian Lin,Mang Ye,Kaihao Zhang,Bo Du
Pedestrian behavior exhibits inherent multi-modality, necessitating predictions that balance accuracy and diversity to adapt effectively to various complex scenarios. However, conventional noise addition in diffusion models is often aimless and unguided, leading to redundant noise reduction steps and the generation of uncontrollable samples. To address these issues, we propose a Prior Condition-Guided Diffusion Model (CGD-TraP) for multi-modal pedestrian trajectory prediction. Instead of directly adding Gaussian noise to trajectories at each timestep during the forward process, our approach leverages internal intention and external interaction to guide noise estimation. Specifically, we design two specialized modules to extract and aggregate intention and interaction features. These features are then adaptively fused through a spatial-temporal fusion based on selective state space, which estimates a controllable noisy trajectory distribution. By optimizing the noise addition process in a more controlled and efficient manner, our method ensures that the denoising process is effectively guided, resulting in predictions that are both accurate and diverse. Extensive experiments on the ETH-UCY, SDD, and NBA datasets demonstrate that CGD-TraP surpasses state-of-the-art diffusion-based and other generative methods, achieving superior efficiency, accuracy, and diversity.
行人行为表现出固有的多模态,因此需要平衡准确性和多样性的预测,以有效地适应各种复杂的场景。然而,传统的扩散模型中的噪声添加往往是无目的和无导向的,导致冗余的降噪步骤和不可控样本的产生。为了解决这些问题,我们提出了一种用于多模式行人轨迹预测的先验条件引导扩散模型(CGD-TraP)。我们的方法利用内部意图和外部相互作用来指导噪声估计,而不是直接在每个时间步长的轨迹上添加高斯噪声。具体来说,我们设计了两个专门的模块来提取和聚合意图和交互特征。然后通过基于选择性状态空间的时空融合自适应融合这些特征,该融合估计出可控的噪声轨迹分布。通过以更可控和高效的方式优化噪声添加过程,我们的方法确保有效地指导去噪过程,从而获得准确和多样化的预测。在ETH-UCY、SDD和NBA数据集上进行的大量实验表明,CGD-TraP优于最先进的基于扩散的生成方法和其他生成方法,实现了卓越的效率、准确性和多样性。
{"title":"Condition-Guided Diffusion for Multi-Modal Pedestrian Trajectory Prediction Incorporating Intention and Interaction Priors.","authors":"Yanghong Liu,Xingping Dong,Yutian Lin,Mang Ye,Kaihao Zhang,Bo Du","doi":"10.1109/tpami.2025.3645918","DOIUrl":"https://doi.org/10.1109/tpami.2025.3645918","url":null,"abstract":"Pedestrian behavior exhibits inherent multi-modality, necessitating predictions that balance accuracy and diversity to adapt effectively to various complex scenarios. However, conventional noise addition in diffusion models is often aimless and unguided, leading to redundant noise reduction steps and the generation of uncontrollable samples. To address these issues, we propose a Prior Condition-Guided Diffusion Model (CGD-TraP) for multi-modal pedestrian trajectory prediction. Instead of directly adding Gaussian noise to trajectories at each timestep during the forward process, our approach leverages internal intention and external interaction to guide noise estimation. Specifically, we design two specialized modules to extract and aggregate intention and interaction features. These features are then adaptively fused through a spatial-temporal fusion based on selective state space, which estimates a controllable noisy trajectory distribution. By optimizing the noise addition process in a more controlled and efficient manner, our method ensures that the denoising process is effectively guided, resulting in predictions that are both accurate and diverse. Extensive experiments on the ETH-UCY, SDD, and NBA datasets demonstrate that CGD-TraP surpasses state-of-the-art diffusion-based and other generative methods, achieving superior efficiency, accuracy, and diversity.","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"159 1","pages":""},"PeriodicalIF":23.6,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145777301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Handwritten Text Recognition: A Survey 手写体文本识别:综述
IF 23.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-18 DOI: 10.1109/tpami.2025.3646002
Carlos Garrido-Munoz, Antonio Rios-Vila, Jorge Calvo-Zaragoza
{"title":"Handwritten Text Recognition: A Survey","authors":"Carlos Garrido-Munoz, Antonio Rios-Vila, Jorge Calvo-Zaragoza","doi":"10.1109/tpami.2025.3646002","DOIUrl":"https://doi.org/10.1109/tpami.2025.3646002","url":null,"abstract":"","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"10 1","pages":""},"PeriodicalIF":23.6,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145777824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Pattern Analysis and Machine Intelligence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1