How personalized heart modeling can help treatment of lethal arrhythmias: A focus on ventricular tachycardia ablation strategies in post-infarction patients.
Natalia A Trayanova, Ashish N Doshi, Adityo Prakosa
{"title":"How personalized heart modeling can help treatment of lethal arrhythmias: A focus on ventricular tachycardia ablation strategies in post-infarction patients.","authors":"Natalia A Trayanova, Ashish N Doshi, Adityo Prakosa","doi":"10.1002/wsbm.1477","DOIUrl":null,"url":null,"abstract":"<p><p>Precision Cardiology is a targeted strategy for cardiovascular disease prevention and treatment that accounts for individual variability. Computational heart modeling is one of the novel approaches that have been developed under the umbrella of Precision Cardiology. Personalized computational modeling of patient hearts has made strides in the development of models that incorporate the individual geometry and structure of the heart as well as other patient-specific information. Of these developments, one of the potentially most impactful is the research aimed at noninvasively predicting the targets of ablation of lethal arrhythmia, ventricular tachycardia (VT), using patient-specific models. The approach has been successfully applied to patients with ischemic cardiomyopathy in proof-of-concept studies. The goal of this paper is to review the strategies for computational VT ablation guidance in ischemic cardiomyopathy patients, from model developments to the intricacies of the actual clinical application. To provide context in describing the road these computational modeling applications have undertaken, we first review the state of the art in VT ablation in the clinic, emphasizing the benefits that personalized computational prediction of ablation targets could bring to the clinical electrophysiology practice. This article is characterized under: Analytical and Computational Methods > Computational Methods Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models Translational, Genomic, and Systems Medicine > Translational Medicine.</p>","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wsbm.1477","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 14
Abstract
Precision Cardiology is a targeted strategy for cardiovascular disease prevention and treatment that accounts for individual variability. Computational heart modeling is one of the novel approaches that have been developed under the umbrella of Precision Cardiology. Personalized computational modeling of patient hearts has made strides in the development of models that incorporate the individual geometry and structure of the heart as well as other patient-specific information. Of these developments, one of the potentially most impactful is the research aimed at noninvasively predicting the targets of ablation of lethal arrhythmia, ventricular tachycardia (VT), using patient-specific models. The approach has been successfully applied to patients with ischemic cardiomyopathy in proof-of-concept studies. The goal of this paper is to review the strategies for computational VT ablation guidance in ischemic cardiomyopathy patients, from model developments to the intricacies of the actual clinical application. To provide context in describing the road these computational modeling applications have undertaken, we first review the state of the art in VT ablation in the clinic, emphasizing the benefits that personalized computational prediction of ablation targets could bring to the clinical electrophysiology practice. This article is characterized under: Analytical and Computational Methods > Computational Methods Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models Translational, Genomic, and Systems Medicine > Translational Medicine.
期刊介绍:
Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine
Focus:
Strong interdisciplinary focus
Serves as an encyclopedic reference for systems biology research
Conceptual Framework:
Systems biology asserts the study of organisms as hierarchical systems or networks
Individual biological components interact in complex ways within these systems
Article Coverage:
Discusses biology, methods, and models
Spans systems from a few molecules to whole species
Topical Coverage:
Developmental Biology
Physiology
Biological Mechanisms
Models of Systems, Properties, and Processes
Laboratory Methods and Technologies
Translational, Genomic, and Systems Medicine