Multi-Access Networking with Wireless Ultrasound-Powered Implants.

Ting Chia Chang, Max Wang, Amin Arbabian
{"title":"Multi-Access Networking with Wireless Ultrasound-Powered Implants.","authors":"Ting Chia Chang,&nbsp;Max Wang,&nbsp;Amin Arbabian","doi":"10.1109/BIOCAS.2019.8919144","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-access networking with miniaturized wireless implantable devices can enable and advance closed-loop medical applications to deliver precise diagnosis and treatment. Using ultrasound (US) for wireless implant systems is an advantageous approach as US can beamform with high spatial resolution to efficiently power and address multiple implants in the network. To demonstrate these capabilities, we use wirelessly powered mm-sized implants with bidirectional communication links; uplink data communication measurements are performed using time, spatial, and frequency-division multiplexing schemes in tissue phantom. A 32-channel linear transmitter array and an external receiver are used as a base station to network with two implants that are placed 6.5 cm deep and spaced less than 1 cm apart. Successful wireless powering and uplink data communication around 100 kbps with a measured bit error rate below 10<sup>-4</sup> are demonstrated for all three networking schemes, validating the multi-access networking feasibility of US wireless implant systems.</p>","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":"2019 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/BIOCAS.2019.8919144","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2019.8919144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/12/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Multi-access networking with miniaturized wireless implantable devices can enable and advance closed-loop medical applications to deliver precise diagnosis and treatment. Using ultrasound (US) for wireless implant systems is an advantageous approach as US can beamform with high spatial resolution to efficiently power and address multiple implants in the network. To demonstrate these capabilities, we use wirelessly powered mm-sized implants with bidirectional communication links; uplink data communication measurements are performed using time, spatial, and frequency-division multiplexing schemes in tissue phantom. A 32-channel linear transmitter array and an external receiver are used as a base station to network with two implants that are placed 6.5 cm deep and spaced less than 1 cm apart. Successful wireless powering and uplink data communication around 100 kbps with a measured bit error rate below 10-4 are demonstrated for all three networking schemes, validating the multi-access networking feasibility of US wireless implant systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线超声植入物的多接入网络。
带有微型无线植入式设备的多址网络可以实现和推进闭环医疗应用,以提供精确的诊断和治疗。在无线植入系统中使用超声是一种有利的方法,因为超声可以以高空间分辨率进行波束形成,从而有效地为网络中的多个植入物供电和寻址。为了证明这些能力,我们使用了无线供电的毫米大小的植入物,带有双向通信链路;上行数据通信测量使用时间、空间和频分复用方案在组织幻象中执行。一个32通道的线性发射器阵列和一个外部接收器被用作基站,两个植入物放置在6.5厘米深,间隔小于1厘米。在所有三种网络方案中,成功的无线供电和上行数据通信在100 kbps左右,测量误码率低于10-4,验证了美国无线植入系统多接入网络的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microscale 3-D Capacitance Tomography with a CMOS Sensor Array. FlowMorph: Morphological Segmentation of Ultrasound-Monitored Spinal Cord Microcirculation. Programmable Electrochemical Stimulation on a Large-Scale CMOS Microelectrode Array. Design and Simulation of a Low Power 384-channel Actively Multiplexed Neural Interface. Estimating Intrinsic Manifold Dimensionality to Classify Task-Related Information in Human and Non-Human Primate Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1