{"title":"Effects of glutathione and cysteine on pyrrolizidine alkaloid-induced hepatotoxicity and DNA adduct formation in rat primary hepatocytes.","authors":"Xiaobo He, Qingsu Xia, Qiang Shi, Peter P Fu","doi":"10.1080/26896583.2020.1738161","DOIUrl":null,"url":null,"abstract":"<p><p>Pyrrolizidine alkaloids (PAs) are hepatotoxic, genotoxic, and carcinogenic phytochemicals. Upon metabolic activation, PAs produce dehydropyrrolizidine alkaloids (dehydro-PAs) as reactive primary pyrrolic metabolites. Dehydro-PAs are unstable, facilely hydrolyzed to (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5<i>H</i>-pyrrolizine (DHP). Both dehydro-PAs and DHP are capable of binding to cellular DNA and proteins to form DHP-DNA and DHP-protein adducts leading to tumorigenicity and cytotoxicity. We recently determined that the reaction of dehydro-PAs with glutathione and cysteine generated 7-glutathione-DHP (7-GS-DHP) and 7-cysteine-DHP, respectively which can also bind to DNA to produce DHP-DNA adducts. In this study, we determined the effects of glutathione and cysteine on the induction of hepatocytotoxicity and the formation of DHP-DNA adducts in primary hepatocytes cultured with riddelliine and monocrotaline. We found that both glutathione and cysteine can drastically reduce hepatotoxicity while the levels of DHP-DNA adduct formation are slightly affected.</p>","PeriodicalId":53200,"journal":{"name":"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis","volume":"38 2","pages":"109-123"},"PeriodicalIF":1.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/26896583.2020.1738161","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/26896583.2020.1738161","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/4/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 10
Abstract
Pyrrolizidine alkaloids (PAs) are hepatotoxic, genotoxic, and carcinogenic phytochemicals. Upon metabolic activation, PAs produce dehydropyrrolizidine alkaloids (dehydro-PAs) as reactive primary pyrrolic metabolites. Dehydro-PAs are unstable, facilely hydrolyzed to (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP). Both dehydro-PAs and DHP are capable of binding to cellular DNA and proteins to form DHP-DNA and DHP-protein adducts leading to tumorigenicity and cytotoxicity. We recently determined that the reaction of dehydro-PAs with glutathione and cysteine generated 7-glutathione-DHP (7-GS-DHP) and 7-cysteine-DHP, respectively which can also bind to DNA to produce DHP-DNA adducts. In this study, we determined the effects of glutathione and cysteine on the induction of hepatocytotoxicity and the formation of DHP-DNA adducts in primary hepatocytes cultured with riddelliine and monocrotaline. We found that both glutathione and cysteine can drastically reduce hepatotoxicity while the levels of DHP-DNA adduct formation are slightly affected.