Diabetic photoreceptors: Mechanisms underlying changes in structure and function.

IF 1.1 4区 医学 Q4 NEUROSCIENCES Visual Neuroscience Pub Date : 2020-10-06 DOI:10.1017/S0952523820000097
Silke Becker, Lara S Carroll, Frans Vinberg
{"title":"Diabetic photoreceptors: Mechanisms underlying changes in structure and function.","authors":"Silke Becker, Lara S Carroll, Frans Vinberg","doi":"10.1017/S0952523820000097","DOIUrl":null,"url":null,"abstract":"<p><p>Based on clinical findings, diabetic retinopathy (DR) has traditionally been defined as a retinal microvasculopathy. Retinal neuronal dysfunction is now recognized as an early event in the diabetic retina before development of overt DR. While detrimental effects of diabetes on the survival and function of inner retinal cells, such as retinal ganglion cells and amacrine cells, are widely recognized, evidence that photoreceptors in the outer retina undergo early alterations in diabetes has emerged more recently. We review data from preclinical and clinical studies demonstrating a conserved reduction of electrophysiological function in diabetic retinas, as well as evidence for photoreceptor loss. Complementing in vivo studies, we discuss the ex vivo electroretinography technique as a useful method to investigate photoreceptor function in isolated retinas from diabetic animal models. Finally, we consider the possibility that early photoreceptor pathology contributes to the progression of DR, and discuss possible mechanisms of photoreceptor damage in the diabetic retina, such as enhanced production of reactive oxygen species and other inflammatory factors whose detrimental effects may be augmented by phototransduction.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":"37 ","pages":"E008"},"PeriodicalIF":1.1000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694110/pdf/nihms-1761309.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0952523820000097","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Based on clinical findings, diabetic retinopathy (DR) has traditionally been defined as a retinal microvasculopathy. Retinal neuronal dysfunction is now recognized as an early event in the diabetic retina before development of overt DR. While detrimental effects of diabetes on the survival and function of inner retinal cells, such as retinal ganglion cells and amacrine cells, are widely recognized, evidence that photoreceptors in the outer retina undergo early alterations in diabetes has emerged more recently. We review data from preclinical and clinical studies demonstrating a conserved reduction of electrophysiological function in diabetic retinas, as well as evidence for photoreceptor loss. Complementing in vivo studies, we discuss the ex vivo electroretinography technique as a useful method to investigate photoreceptor function in isolated retinas from diabetic animal models. Finally, we consider the possibility that early photoreceptor pathology contributes to the progression of DR, and discuss possible mechanisms of photoreceptor damage in the diabetic retina, such as enhanced production of reactive oxygen species and other inflammatory factors whose detrimental effects may be augmented by phototransduction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
糖尿病光感受器:结构和功能变化的机理。
根据临床发现,糖尿病视网膜病变(DR)传统上被定义为视网膜微血管病变。现在,视网膜神经元功能障碍被认为是糖尿病视网膜发生明显 DR 之前的早期症状。虽然糖尿病对视网膜内部细胞(如视网膜神经节细胞和视网膜神经元细胞)的存活和功能的有害影响已得到广泛认可,但最近出现的证据表明,糖尿病患者视网膜外部的感光细胞会发生早期改变。我们回顾了临床前和临床研究的数据,这些数据表明糖尿病视网膜的电生理功能普遍降低,并有证据表明光感受器丢失。作为体内研究的补充,我们讨论了体内外视网膜电图技术,该技术是研究糖尿病动物模型离体视网膜感光器功能的有效方法。最后,我们考虑了早期光感受器病变导致 DR 进展的可能性,并讨论了糖尿病视网膜中光感受器损伤的可能机制,如活性氧和其他炎症因子的生成增强,光传导可能会增强其有害效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Visual Neuroscience
Visual Neuroscience 医学-神经科学
CiteScore
2.20
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Visual Neuroscience is an international journal devoted to the publication of experimental and theoretical research on biological mechanisms of vision. A major goal of publication is to bring together in one journal a broad range of studies that reflect the diversity and originality of all aspects of neuroscience research relating to the visual system. Contributions may address molecular, cellular or systems-level processes in either vertebrate or invertebrate species. The journal publishes work based on a wide range of technical approaches, including molecular genetics, anatomy, physiology, psychophysics and imaging, and utilizing comparative, developmental, theoretical or computational approaches to understand the biology of vision and visuo-motor control. The journal also publishes research seeking to understand disorders of the visual system and strategies for restoring vision. Studies based exclusively on clinical, psychophysiological or behavioral data are welcomed, provided that they address questions concerning neural mechanisms of vision or provide insight into visual dysfunction.
期刊最新文献
Support for the efficient coding account of visual discomfort. Visual Field Asymmetries in Responses to ON and OFF Pathway Biasing Stimuli. Pattern reversal chromatic VEPs like onsets, are unaffected by attentional demand. The interaction between luminance polarity grouping and symmetry axes on the ERP responses to symmetry. Electroretinographic responses to periodic stimuli in primates and the relevance for visual perception and for clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1