{"title":"Dirhodium tetracarboxylates as catalysts for selective intermolecular C–H functionalization","authors":"Huw M. L. Davies, Kuangbiao Liao","doi":"10.1038/s41570-019-0099-x","DOIUrl":null,"url":null,"abstract":"C–H functionalization has become widely recognized as an exciting new strategy for the synthesis of complex molecular targets. Instead of relying on functional groups as the controlling elements of how molecules are assembled, this strategy offers an altogether different logic for organic synthesis. For this type of strategy to be successful, reagents and catalysts need to be developed that generate intermediates that are sufficiently reactive to functionalize C–H bonds but are still capable of distinguishing between the many different C–H bonds and other functional groups present in a molecule. The most well-established approaches have tended to use substrates that inherently have a favoured site for C–H functionalization or rely on intramolecular reactions to control where the reaction will occur. A challenging but potentially more versatile approach would be to use catalysts to control the site selectivity without requiring the influence of any directing group. One example that is capable of achieving such transformations is the C–H insertion chemistry of transient metal carbenes. Dirhodium tetracarboxylates have been shown to be especially effective catalysts for these reactions. This Review highlights the development of these dirhodium catalysts and illustrates their effectiveness to control both site-selective and stereoselective C–H functionalization of a wide variety of substrates. The development of C–H functionalization methodology offers a new logic for chemical synthesis. Dirhodium tetracarboxylates have emerged as some of the most effective catalysts for these transformations, enabling site-selective and stereoselective insertion of transient metal carbenes into C–H bonds.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"3 6","pages":"347-360"},"PeriodicalIF":38.1000,"publicationDate":"2019-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41570-019-0099-x","citationCount":"152","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews. Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41570-019-0099-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 152
Abstract
C–H functionalization has become widely recognized as an exciting new strategy for the synthesis of complex molecular targets. Instead of relying on functional groups as the controlling elements of how molecules are assembled, this strategy offers an altogether different logic for organic synthesis. For this type of strategy to be successful, reagents and catalysts need to be developed that generate intermediates that are sufficiently reactive to functionalize C–H bonds but are still capable of distinguishing between the many different C–H bonds and other functional groups present in a molecule. The most well-established approaches have tended to use substrates that inherently have a favoured site for C–H functionalization or rely on intramolecular reactions to control where the reaction will occur. A challenging but potentially more versatile approach would be to use catalysts to control the site selectivity without requiring the influence of any directing group. One example that is capable of achieving such transformations is the C–H insertion chemistry of transient metal carbenes. Dirhodium tetracarboxylates have been shown to be especially effective catalysts for these reactions. This Review highlights the development of these dirhodium catalysts and illustrates their effectiveness to control both site-selective and stereoselective C–H functionalization of a wide variety of substrates. The development of C–H functionalization methodology offers a new logic for chemical synthesis. Dirhodium tetracarboxylates have emerged as some of the most effective catalysts for these transformations, enabling site-selective and stereoselective insertion of transient metal carbenes into C–H bonds.
期刊介绍:
Nature Reviews Chemistry is an online-only journal that publishes Reviews, Perspectives, and Comments on various disciplines within chemistry. The Reviews aim to offer balanced and objective analyses of selected topics, providing clear descriptions of relevant scientific literature. The content is designed to be accessible to recent graduates in any chemistry-related discipline while also offering insights for principal investigators and industry-based research scientists. Additionally, Reviews should provide the authors' perspectives on future directions and opinions regarding the major challenges faced by researchers in the field.