{"title":"Motor imagery recognition with automatic EEG channel selection and deep learning.","authors":"Han Zhang, Xing Zhao, Zexu Wu, Biao Sun, Ting Li","doi":"10.1088/1741-2552/abca16","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Modern motor imagery (MI)-based brain computer interface systems often entail a large number of electroencephalogram (EEG) recording channels. However, irrelevant or highly correlated channels would diminish the discriminatory ability, thus reducing the control capability of external devices. How to optimally select channels and extract associated features remains a big challenge. This study aims to propose and validate a deep learning-based approach to automatically recognize two different MI states by selecting the relevant EEG channels.<i>Approach.</i>In this work, we make use of a sparse squeeze-and-excitation module to extract the weights of EEG channels based on their contribution to MI classification, by which an automatic channel selection (ACS) strategy is developed. Further, we propose a convolutional neural network to fully exploit the time-frequency features, thus outperforming traditional classification methods both in terms of accuracy and robustness.<i>Main results.</i>We execute the experiments using EEG signals recorded at MI where 25 healthy subjects performed MI movements of the right hand and feet to generate motor commands. An average accuracy of87.2±5.0% (mean±std)is obtained, providing a 37.3% improvement with respect to a state-of-the-art channel selection approach.<i>Significance.</i>The proposed ACS method has been found to be significantly advantageous compared to the typical approach of using a fixed channel configuration. This work shows that fewer EEG channels not only reduces computational complexity but also improves the MI classification performance. The proposed method selects EEG channels related to hand and feet movement, which paves the way to real-time and more natural interfaces between the patient and the robotic device.</p>","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2021-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/abca16","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 42
Abstract
Objective.Modern motor imagery (MI)-based brain computer interface systems often entail a large number of electroencephalogram (EEG) recording channels. However, irrelevant or highly correlated channels would diminish the discriminatory ability, thus reducing the control capability of external devices. How to optimally select channels and extract associated features remains a big challenge. This study aims to propose and validate a deep learning-based approach to automatically recognize two different MI states by selecting the relevant EEG channels.Approach.In this work, we make use of a sparse squeeze-and-excitation module to extract the weights of EEG channels based on their contribution to MI classification, by which an automatic channel selection (ACS) strategy is developed. Further, we propose a convolutional neural network to fully exploit the time-frequency features, thus outperforming traditional classification methods both in terms of accuracy and robustness.Main results.We execute the experiments using EEG signals recorded at MI where 25 healthy subjects performed MI movements of the right hand and feet to generate motor commands. An average accuracy of87.2±5.0% (mean±std)is obtained, providing a 37.3% improvement with respect to a state-of-the-art channel selection approach.Significance.The proposed ACS method has been found to be significantly advantageous compared to the typical approach of using a fixed channel configuration. This work shows that fewer EEG channels not only reduces computational complexity but also improves the MI classification performance. The proposed method selects EEG channels related to hand and feet movement, which paves the way to real-time and more natural interfaces between the patient and the robotic device.
期刊介绍:
The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels.
The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.