{"title":"Motor imagery recognition with automatic EEG channel selection and deep learning.","authors":"Han Zhang, Xing Zhao, Zexu Wu, Biao Sun, Ting Li","doi":"10.1088/1741-2552/abca16","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Modern motor imagery (MI)-based brain computer interface systems often entail a large number of electroencephalogram (EEG) recording channels. However, irrelevant or highly correlated channels would diminish the discriminatory ability, thus reducing the control capability of external devices. How to optimally select channels and extract associated features remains a big challenge. This study aims to propose and validate a deep learning-based approach to automatically recognize two different MI states by selecting the relevant EEG channels.<i>Approach.</i>In this work, we make use of a sparse squeeze-and-excitation module to extract the weights of EEG channels based on their contribution to MI classification, by which an automatic channel selection (ACS) strategy is developed. Further, we propose a convolutional neural network to fully exploit the time-frequency features, thus outperforming traditional classification methods both in terms of accuracy and robustness.<i>Main results.</i>We execute the experiments using EEG signals recorded at MI where 25 healthy subjects performed MI movements of the right hand and feet to generate motor commands. An average accuracy of87.2±5.0% (mean±std)is obtained, providing a 37.3% improvement with respect to a state-of-the-art channel selection approach.<i>Significance.</i>The proposed ACS method has been found to be significantly advantageous compared to the typical approach of using a fixed channel configuration. This work shows that fewer EEG channels not only reduces computational complexity but also improves the MI classification performance. The proposed method selects EEG channels related to hand and feet movement, which paves the way to real-time and more natural interfaces between the patient and the robotic device.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2021-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/abca16","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 42
Abstract
Objective.Modern motor imagery (MI)-based brain computer interface systems often entail a large number of electroencephalogram (EEG) recording channels. However, irrelevant or highly correlated channels would diminish the discriminatory ability, thus reducing the control capability of external devices. How to optimally select channels and extract associated features remains a big challenge. This study aims to propose and validate a deep learning-based approach to automatically recognize two different MI states by selecting the relevant EEG channels.Approach.In this work, we make use of a sparse squeeze-and-excitation module to extract the weights of EEG channels based on their contribution to MI classification, by which an automatic channel selection (ACS) strategy is developed. Further, we propose a convolutional neural network to fully exploit the time-frequency features, thus outperforming traditional classification methods both in terms of accuracy and robustness.Main results.We execute the experiments using EEG signals recorded at MI where 25 healthy subjects performed MI movements of the right hand and feet to generate motor commands. An average accuracy of87.2±5.0% (mean±std)is obtained, providing a 37.3% improvement with respect to a state-of-the-art channel selection approach.Significance.The proposed ACS method has been found to be significantly advantageous compared to the typical approach of using a fixed channel configuration. This work shows that fewer EEG channels not only reduces computational complexity but also improves the MI classification performance. The proposed method selects EEG channels related to hand and feet movement, which paves the way to real-time and more natural interfaces between the patient and the robotic device.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico