Berkay Aydin, Soukaina Filali Boubrahimi, Ahmet Kucuk, Bita Nezamdoust, Rafal A Angryk
{"title":"Spatiotemporal event sequence discovery without thresholds.","authors":"Berkay Aydin, Soukaina Filali Boubrahimi, Ahmet Kucuk, Bita Nezamdoust, Rafal A Angryk","doi":"10.1007/s10707-020-00427-6","DOIUrl":null,"url":null,"abstract":"<p><p>Spatiotemporal event sequences (STESs) are the ordered series of event types whose instances frequently follow each other in time and are located close-by. An STES is a spatiotemporal frequent pattern type, which is discovered from moving region objects whose polygon-based locations continiously evolve over time. Previous studies on STES mining require significance and prevalence thresholds for the discovery, which is usually unknown to domain experts. The quality of the discovered sequences is of great importance to the domain experts who use these algorithms. We introduce a novel algorithm to find the most relevant STESs without threshold values. We tested the relevance and performance of our threshold-free algorithm with a case study on solar event metadata, and compared the results with the previous STES mining algorithms.</p>","PeriodicalId":55109,"journal":{"name":"Geoinformatica","volume":"25 1","pages":"149-177"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10707-020-00427-6","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoinformatica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10707-020-00427-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
Spatiotemporal event sequences (STESs) are the ordered series of event types whose instances frequently follow each other in time and are located close-by. An STES is a spatiotemporal frequent pattern type, which is discovered from moving region objects whose polygon-based locations continiously evolve over time. Previous studies on STES mining require significance and prevalence thresholds for the discovery, which is usually unknown to domain experts. The quality of the discovered sequences is of great importance to the domain experts who use these algorithms. We introduce a novel algorithm to find the most relevant STESs without threshold values. We tested the relevance and performance of our threshold-free algorithm with a case study on solar event metadata, and compared the results with the previous STES mining algorithms.
期刊介绍:
GeoInformatica is located at the confluence of two rapidly advancing domains: Computer Science and Geographic Information Science; nowadays, Earth studies use more and more sophisticated computing theory and tools, and computer processing of Earth observations through Geographic Information Systems (GIS) attracts a great deal of attention from governmental, industrial and research worlds.
This journal aims to promote the most innovative results coming from the research in the field of computer science applied to geographic information systems. Thus, GeoInformatica provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of the use of computer science for spatial studies.