3D cell-printing of tendon-bone interface using tissue-derived extracellular matrix bioinks for chronic rotator cuff repair.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biofabrication Pub Date : 2021-04-02 DOI:10.1088/1758-5090/abd159
Suhun Chae, Yucheng Sun, Yeong-Jin Choi, Dong-Heon Ha, Inho Jeon, Dong-Woo Cho
{"title":"3D cell-printing of tendon-bone interface using tissue-derived extracellular matrix bioinks for chronic rotator cuff repair.","authors":"Suhun Chae,&nbsp;Yucheng Sun,&nbsp;Yeong-Jin Choi,&nbsp;Dong-Heon Ha,&nbsp;Inho Jeon,&nbsp;Dong-Woo Cho","doi":"10.1088/1758-5090/abd159","DOIUrl":null,"url":null,"abstract":"<p><p>The tendon-bone interface (TBI) in rotator cuffs exhibits a structural and compositional gradient integrated through the fibrocartilaginous transition. Owing to restricted healing capacity, functional regeneration of the TBI is considered a great clinical challenge. Here, we establish a novel therapeutic platform based on 3D cell-printing and tissue-specific bioinks to achieve spatially-graded physiology for functional TBI regeneration. The 3D cell-printed TBI patch constructs are created via a spatial arrangement of cell-laden tendon and bone-specific bioinks in a graded manner, approximating a multi-tissue fibrocartilaginous interface. This TBI patch offers a cell favorable microenvironment, including high cell viability, proliferative capacity, and zonal-specific differentiation of encapsulated stem cells for TBI formation<i>in vitro</i>. Furthermore,<i>in vivo</i>application of spatially-graded TBI patches with stem cells demonstrates their regenerative potential, indicating that repair with 3D cell-printed TBI patch significantly accelerates and promotes TBI healing in a rat chronic tear model. Therefore, our findings propose a new therapeutic strategy for functional TBI regeneration using 3D cell-printing and tissue-specific decellularized extracellular matrix bioink-based approach.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/abd159","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 39

Abstract

The tendon-bone interface (TBI) in rotator cuffs exhibits a structural and compositional gradient integrated through the fibrocartilaginous transition. Owing to restricted healing capacity, functional regeneration of the TBI is considered a great clinical challenge. Here, we establish a novel therapeutic platform based on 3D cell-printing and tissue-specific bioinks to achieve spatially-graded physiology for functional TBI regeneration. The 3D cell-printed TBI patch constructs are created via a spatial arrangement of cell-laden tendon and bone-specific bioinks in a graded manner, approximating a multi-tissue fibrocartilaginous interface. This TBI patch offers a cell favorable microenvironment, including high cell viability, proliferative capacity, and zonal-specific differentiation of encapsulated stem cells for TBI formationin vitro. Furthermore,in vivoapplication of spatially-graded TBI patches with stem cells demonstrates their regenerative potential, indicating that repair with 3D cell-printed TBI patch significantly accelerates and promotes TBI healing in a rat chronic tear model. Therefore, our findings propose a new therapeutic strategy for functional TBI regeneration using 3D cell-printing and tissue-specific decellularized extracellular matrix bioink-based approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用组织来源的细胞外基质生物墨水进行肌腱-骨界面的3D细胞打印,用于慢性肩袖修复。
肌腱-骨界面(TBI)通过纤维软骨过渡呈现结构和成分梯度。由于愈合能力有限,创伤性脑损伤的功能再生被认为是一个巨大的临床挑战。在这里,我们建立了一个基于3D细胞打印和组织特异性生物链接的新型治疗平台,以实现功能性TBI再生的空间梯度生理学。3D细胞打印的TBI贴片结构是通过细胞负载肌腱和骨特异性生物墨水的空间排列以分级方式创建的,近似于多组织纤维软骨界面。这种TBI贴片提供了一个良好的细胞微环境,包括高细胞活力、增殖能力和包被干细胞的区域特异性分化,用于体外TBI的形成。此外,在大鼠慢性撕裂模型中,干细胞空间分级TBI贴片的体内应用显示了其再生潜力,表明3D细胞打印的TBI贴片修复可显著加速和促进TBI愈合。因此,我们的研究结果提出了一种使用3D细胞打印和组织特异性脱细胞细胞外基质生物墨水为基础的功能性TBI再生的新治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
期刊最新文献
A microphysiological assay for studying T-cell chemotaxis, trafficking and tumor killing. 3D bioprinting of an intervertebral disc tissue analogue with a highly aligned annulus fibrosus via suspended layer additive manufacture. Pharmacy 3D printing. RCAN1.4 regulates tumor cell engraftment and invasion in a thyroid cancer to lung metastasis-on-a-chip microphysiological system. Chlorella-enriched hydrogels protect against myocardial damage and reactive oxygen species production in anin vitroischemia/reperfusion model using cardiac spheroids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1