{"title":"Effects of noise and time delay on E2F's expression level in a bistable Rb-E2F gene’s regulatory network","authors":"John Billy Kirunda, Lijian Yang, Lulu Lu, Ya Jia","doi":"10.1049/syb2.12017","DOIUrl":null,"url":null,"abstract":"<p>The bistable Rb-E2F gene regulatory network plays a central role in regulating cellular proliferation-quiescence transition. Based on Gillespie's chemical Langevin method, the stochastic bistable Rb-E2F gene’s regulatory network with time delays is proposed. It is found that under the moderate intensity of internal noise, delay in the Cyclin E synthesis rate can greatly increase the average concentration value of E2F. When the delay is considered in both E2F-related positive feedback loops, within a specific range of delay (3-13)<math>\n <mrow>\n <mtext>hr</mtext>\n </mrow></math>, the average expression of E2F is significantly increased. Also, this range is in the scope with that experimentally given by Dong et al. [65]. By analysing the quasi-potential curves at different delay times, simulation results show that delay regulates the dynamic behaviour of the system in the following way: small delay stabilises the bistable system; the medium delay is conducive to a high steady-state, making the system fluctuate near the high steady-state; large delay induces approximately periodic transitions between high and low steady-state. Therefore, by regulating noise and time delay, the cell itself can control the expression level of E2F to respond to different situations. These findings may provide an explanation of some experimental result intricacies related to the cell cycle.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"15 4","pages":"111-125"},"PeriodicalIF":1.9000,"publicationDate":"2021-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/14/dc/SYB2-15-111.PMC8675803.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12017","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
The bistable Rb-E2F gene regulatory network plays a central role in regulating cellular proliferation-quiescence transition. Based on Gillespie's chemical Langevin method, the stochastic bistable Rb-E2F gene’s regulatory network with time delays is proposed. It is found that under the moderate intensity of internal noise, delay in the Cyclin E synthesis rate can greatly increase the average concentration value of E2F. When the delay is considered in both E2F-related positive feedback loops, within a specific range of delay (3-13), the average expression of E2F is significantly increased. Also, this range is in the scope with that experimentally given by Dong et al. [65]. By analysing the quasi-potential curves at different delay times, simulation results show that delay regulates the dynamic behaviour of the system in the following way: small delay stabilises the bistable system; the medium delay is conducive to a high steady-state, making the system fluctuate near the high steady-state; large delay induces approximately periodic transitions between high and low steady-state. Therefore, by regulating noise and time delay, the cell itself can control the expression level of E2F to respond to different situations. These findings may provide an explanation of some experimental result intricacies related to the cell cycle.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.