{"title":"Neuropeptides, Inflammation, Biofilms, and diabetic Foot Ulcers.","authors":"Shaoling Yang, Liye Hu, Rui Han, Yiwen Yang","doi":"10.1055/a-1493-0458","DOIUrl":null,"url":null,"abstract":"<p><p>A diabetic foot ulcer (DFU) is a serious complication in patients with diabetes mellitus (DM). A DFU is the most common cause of non-traumatic limb amputation, and patients with DFUs have increased mortality rates within 5 years after amputation. DFUs also increase the risk of cardiovascular and cerebrovascular diseases; therefore, with the increasing incidence and prevalence of diabetic foot wounds, DFUs are gradually becoming a major public health problem. The pathophysiology of DFUs is complicated and remains unclear. In recent years, many studies have demonstrated that the pathophysiology of DFUs is especially associated with neuropeptides, inflammation, and biofilms. Neuropeptides, especially substance P (SP) and calcitonin gene-related peptide (CGRP), play an important role in wound healing. SP and CGRP accelerate the healing of cutaneous wounds by promoting neovascularization, inhibiting the release of certain proinflammatory chemokines, regulating macrophage polarization, and so on. However, the expression of SP and CGRP was downregulated in DM and DFUs. DFUs are characterized by a sustained inflammatory phase. Immune cells such as neutrophils and macrophages are involved in the sustained inflammatory phase in DFUs by extracellular traps (NETs) and dysregulated macrophage polarization, which delays wound healing. Furthermore, DFUs are at increased risk of biofilm formation. Biofilms disturb wound healing by inducing a chronic inflammatory response, inhibiting macrophage phagocytosis and keratinocyte proliferation migration, and transferring antimicrobial resistance genes. To understand the relationships among neuropeptides, inflammation, biofilms, and DFUs, this review highlights the recent scientific advances that provide possible pathophysiological insights into the delayed healing of DFUs.</p>","PeriodicalId":12241,"journal":{"name":"Experimental and Clinical Endocrinology & Diabetes","volume":"130 7","pages":"439-446"},"PeriodicalIF":1.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Clinical Endocrinology & Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-1493-0458","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 7
Abstract
A diabetic foot ulcer (DFU) is a serious complication in patients with diabetes mellitus (DM). A DFU is the most common cause of non-traumatic limb amputation, and patients with DFUs have increased mortality rates within 5 years after amputation. DFUs also increase the risk of cardiovascular and cerebrovascular diseases; therefore, with the increasing incidence and prevalence of diabetic foot wounds, DFUs are gradually becoming a major public health problem. The pathophysiology of DFUs is complicated and remains unclear. In recent years, many studies have demonstrated that the pathophysiology of DFUs is especially associated with neuropeptides, inflammation, and biofilms. Neuropeptides, especially substance P (SP) and calcitonin gene-related peptide (CGRP), play an important role in wound healing. SP and CGRP accelerate the healing of cutaneous wounds by promoting neovascularization, inhibiting the release of certain proinflammatory chemokines, regulating macrophage polarization, and so on. However, the expression of SP and CGRP was downregulated in DM and DFUs. DFUs are characterized by a sustained inflammatory phase. Immune cells such as neutrophils and macrophages are involved in the sustained inflammatory phase in DFUs by extracellular traps (NETs) and dysregulated macrophage polarization, which delays wound healing. Furthermore, DFUs are at increased risk of biofilm formation. Biofilms disturb wound healing by inducing a chronic inflammatory response, inhibiting macrophage phagocytosis and keratinocyte proliferation migration, and transferring antimicrobial resistance genes. To understand the relationships among neuropeptides, inflammation, biofilms, and DFUs, this review highlights the recent scientific advances that provide possible pathophysiological insights into the delayed healing of DFUs.
期刊介绍:
Publishing outstanding articles from all fields of endocrinology and diabetology, from molecular biology to clinical research, this journal is a brilliant resource. Since being published in English in 1983, the popularity of this journal has grown steadily, reflecting the importance of this publication within its field.
Original contributions and short communications appear in each issue along with reviews addressing current topics. In addition, supplementary issues are published each year presenting abstracts or proceedings of national and international scientific meetings.
The journal was initially published in German and is still the oldest endocrinological periodical in the German-language market!