Colin M Wright, James L L Lichtenstein, Lauren P Luscuskie, Graham A Montgomery, Sara Geary, Jonathan N Pruitt, Noa Pinter-Wollman, Carl N Keiser
{"title":"Spatial proximity and prey vibratory cues influence collective hunting in social spiders.","authors":"Colin M Wright, James L L Lichtenstein, Lauren P Luscuskie, Graham A Montgomery, Sara Geary, Jonathan N Pruitt, Noa Pinter-Wollman, Carl N Keiser","doi":"10.1163/22244662-20191062","DOIUrl":null,"url":null,"abstract":"<p><p>Social spiders are thought to predominantly receive information about their environment through vibrational cues. Thus, group living introduces the challenge of distinguishing useful vibrational information from the background noise of nestmates. Here we investigate whether spatial proximity between colony-mates may allow social spiders (<i>Stegodyphus dumicola</i>) to reduce background noise that might obstruct vibrational information from prey. To do so, we constructed experimental colonies and measured whether the number of spiders in proximity to one another whilst resting could predict the number of spiders that participated in prey capture. Additionally, we exposed spider colonies to five different simulated vibrational cues mimicking prey to determine which cue types spiders were most responsive to. We found that the number of spiders huddled together prior to foraging trials was positively correlated with the number of spiders participating in collective foraging. Furthermore, colonies responded more quickly to pulsed vibrational cues over other types of vibrational patterns. Together these data reveal that both social interactions and prey cues shape how social sit-and-wait predators experience and respond to their environment.</p>","PeriodicalId":50267,"journal":{"name":"Israel Journal of Ecology & Evolution","volume":"66 1-2","pages":"26-31"},"PeriodicalIF":1.3000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/22244662-20191062","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Ecology & Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1163/22244662-20191062","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
Social spiders are thought to predominantly receive information about their environment through vibrational cues. Thus, group living introduces the challenge of distinguishing useful vibrational information from the background noise of nestmates. Here we investigate whether spatial proximity between colony-mates may allow social spiders (Stegodyphus dumicola) to reduce background noise that might obstruct vibrational information from prey. To do so, we constructed experimental colonies and measured whether the number of spiders in proximity to one another whilst resting could predict the number of spiders that participated in prey capture. Additionally, we exposed spider colonies to five different simulated vibrational cues mimicking prey to determine which cue types spiders were most responsive to. We found that the number of spiders huddled together prior to foraging trials was positively correlated with the number of spiders participating in collective foraging. Furthermore, colonies responded more quickly to pulsed vibrational cues over other types of vibrational patterns. Together these data reveal that both social interactions and prey cues shape how social sit-and-wait predators experience and respond to their environment.
期刊介绍:
The Israel Journal of Ecology and Evolution includes high-quality original research and review papers that advance our knowledge and understanding of the function, diversity, abundance, distribution, and evolution of organisms. We give equal consideration to all submissions regardless of geography.