Effect of C-6 Methylol Groups on Substrate Recognition of Glucose/Xylose Mixed Oligosaccharides by Cellobiose Dehydrogenase from the Basidiomycete Phanerochaete chrysosporium.

IF 1.2 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of applied glycoscience Pub Date : 2020-05-20 eCollection Date: 2020-01-01 DOI:10.5458/jag.jag.JAG-2020_0003
Kiyohiko Igarashi, Satoshi Kaneko, Motomitsu Kitaoka, Masahiro Samejima
{"title":"Effect of C-6 Methylol Groups on Substrate Recognition of Glucose/Xylose Mixed Oligosaccharides by Cellobiose Dehydrogenase from the Basidiomycete <i>Phanerochaete chrysosporium</i>.","authors":"Kiyohiko Igarashi,&nbsp;Satoshi Kaneko,&nbsp;Motomitsu Kitaoka,&nbsp;Masahiro Samejima","doi":"10.5458/jag.jag.JAG-2020_0003","DOIUrl":null,"url":null,"abstract":"<p><p>Cellobiose dehydrogenase (CDH) is a flavocytochrome catalyzing oxidation of the reducing end of cellobiose and cellooligosaccharides, and has a key role in the degradation of cellulosic biomass by filamentous fungi. Here, we use a lineup of glucose/xylose-mixed β-1,4-linked disaccharides and trisaccharides, enzymatically synthesized by means of the reverse reaction of cellobiose phosphorylase and cellodextrin phosphorylase, to investigate the substrate recognition of CDH. We found that CDH utilizes β-D-xylopyranosyl-(1→4)-D-glucopyranose (Xyl-Glc) as an electron donor with similar <i>K</i> <sub>m</sub> and <i>k</i> <sub>cat</sub> values to cellobiose. β-D-Glucopyranosyl-(1→4)-D-xylopyranose (Glc-Xyl) shows a higher <i>K</i> <sub>m</sub> value, while xylobiose does not serve as a substrate. Trisaccharides show similar behavior; i.e., trisaccharides with cellobiose and Xyl-Glc units at the reducing end show similar kinetics, while the enzyme was less active towards those with Glc-Xyl, and inactive towards those with xylobiose. We also use docking simulation to evaluate substrate recognition of the disaccharides, and we discuss possible molecular mechanisms of substrate recognition by CDH.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f0/6e/JAG-67-051.PMC8293687.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2020_0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Cellobiose dehydrogenase (CDH) is a flavocytochrome catalyzing oxidation of the reducing end of cellobiose and cellooligosaccharides, and has a key role in the degradation of cellulosic biomass by filamentous fungi. Here, we use a lineup of glucose/xylose-mixed β-1,4-linked disaccharides and trisaccharides, enzymatically synthesized by means of the reverse reaction of cellobiose phosphorylase and cellodextrin phosphorylase, to investigate the substrate recognition of CDH. We found that CDH utilizes β-D-xylopyranosyl-(1→4)-D-glucopyranose (Xyl-Glc) as an electron donor with similar K m and k cat values to cellobiose. β-D-Glucopyranosyl-(1→4)-D-xylopyranose (Glc-Xyl) shows a higher K m value, while xylobiose does not serve as a substrate. Trisaccharides show similar behavior; i.e., trisaccharides with cellobiose and Xyl-Glc units at the reducing end show similar kinetics, while the enzyme was less active towards those with Glc-Xyl, and inactive towards those with xylobiose. We also use docking simulation to evaluate substrate recognition of the disaccharides, and we discuss possible molecular mechanisms of substrate recognition by CDH.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
C-6甲基对黄孢平革担子菌纤维二糖脱氢酶对葡萄糖/木糖混合低聚糖识别的影响
纤维素二糖脱氢酶(CDH)是一种黄细胞色素,可催化纤维素二糖和纤维素低聚糖的还原端氧化,在丝状真菌降解纤维素生物质中起关键作用。本研究利用纤维素二糖磷酸化酶和纤维素糊精磷酸化酶逆反应合成的葡萄糖/木糖混合β-1,4-连接二糖和三糖,研究了CDH对底物的识别。我们发现CDH利用β-D-xylopyranosyl-(1→4)- d -glucopyranose (yl- glc)作为电子供体,其K - m和K - cat值与纤维素二糖相似。β-D-Glucopyranosyl-(1→4)- d -xylopyranose (Glc-Xyl)表现出更高的K m值,而木糖不作为底物。三糖表现出类似的行为;即,在还原端含有纤维素二糖和木糖二糖的三糖表现出相似的动力学,而酶对含有葡萄糖二糖的三糖活性较低,而对含有木糖二糖的三糖活性较低。我们还使用对接模拟来评估双糖对底物的识别,并讨论了CDH识别底物的可能分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of applied glycoscience
Journal of applied glycoscience BIOCHEMISTRY & MOLECULAR BIOLOGY-
自引率
9.10%
发文量
13
期刊最新文献
A C1/C4-Oxidizing AA10 Lytic Polysaccharide Monooxygenase from Paenibacillus xylaniclasticus Strain TW1. Molecular Weight Distribution of Whole Starch in Rice Endosperm by Gel-permeation Chromatography. Hyaluronidase-inhibiting Polysaccharide from Caulerpa lentillifera. Characterization of an α-L-Arabinofuranosidase GH51 from the Brown-rot Fungus Gloeophyllum trabeum. Identification and Characterization of Dextran α-1,2-Debranching Enzyme from Microbacterium dextranolyticum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1