Signaligner Pro: A Tool to Explore and Annotate Multi-day Raw Accelerometer Data.

Aditya Ponnada, Seth Cooper, Qu Tang, Binod Thapa-Chhetry, Josh Aaron Miller, Dinesh John, Stephen Intille
{"title":"Signaligner Pro: A Tool to Explore and Annotate Multi-day Raw Accelerometer Data.","authors":"Aditya Ponnada,&nbsp;Seth Cooper,&nbsp;Qu Tang,&nbsp;Binod Thapa-Chhetry,&nbsp;Josh Aaron Miller,&nbsp;Dinesh John,&nbsp;Stephen Intille","doi":"10.1109/percomworkshops51409.2021.9431110","DOIUrl":null,"url":null,"abstract":"<p><p>Human activity recognition using wearable accelerometers can enable <i>in-situ</i> detection of physical activities to support novel human-computer interfaces. Many of the machine-learning-based activity recognition algorithms require multi-person, multi-day, carefully annotated training data with precisely marked start and end times of the activities of interest. To date, there is a dearth of usable tools that enable researchers to conveniently visualize and annotate multiple days of high-sampling-rate raw accelerometer data. Thus, we developed Signaligner Pro, an interactive tool to enable researchers to conveniently explore and annotate multi-day high-sampling rate raw accelerometer data. The tool visualizes high-sampling-rate raw data and time-stamped annotations generated by existing activity recognition algorithms and human annotators; the annotations can then be directly modified by the researchers to create their own, improved, annotated datasets. In this paper, we describe the tool's features and implementation that facilitate convenient exploration and annotation of multi-day data and demonstrate its use in generating activity annotations.</p>","PeriodicalId":89224,"journal":{"name":"Proceedings of the ... IEEE International Conference on Pervasive Computing and Communications. IEEE International Conference on Pervasive Computing and Communications","volume":"2021 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/percomworkshops51409.2021.9431110","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE International Conference on Pervasive Computing and Communications. IEEE International Conference on Pervasive Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/percomworkshops51409.2021.9431110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Human activity recognition using wearable accelerometers can enable in-situ detection of physical activities to support novel human-computer interfaces. Many of the machine-learning-based activity recognition algorithms require multi-person, multi-day, carefully annotated training data with precisely marked start and end times of the activities of interest. To date, there is a dearth of usable tools that enable researchers to conveniently visualize and annotate multiple days of high-sampling-rate raw accelerometer data. Thus, we developed Signaligner Pro, an interactive tool to enable researchers to conveniently explore and annotate multi-day high-sampling rate raw accelerometer data. The tool visualizes high-sampling-rate raw data and time-stamped annotations generated by existing activity recognition algorithms and human annotators; the annotations can then be directly modified by the researchers to create their own, improved, annotated datasets. In this paper, we describe the tool's features and implementation that facilitate convenient exploration and annotation of multi-day data and demonstrate its use in generating activity annotations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Signaligner Pro:一个探索和注释多天原始加速度计数据的工具。
使用可穿戴加速度计的人类活动识别可以实现对身体活动的原位检测,以支持新型人机界面。许多基于机器学习的活动识别算法需要多人、多天、仔细注释的训练数据,并精确标记感兴趣活动的开始和结束时间。迄今为止,缺乏可用的工具,使研究人员能够方便地可视化和注释多天的高采样率原始加速度计数据。因此,我们开发了Signaligner Pro,这是一个交互式工具,使研究人员能够方便地探索和注释多天高采样率的原始加速度计数据。该工具可视化高采样率的原始数据和由现有活动识别算法和人工注释器生成的时间戳注释;然后,研究人员可以直接修改这些注释,以创建他们自己的、改进的、带注释的数据集。在本文中,我们描述了该工具的功能和实现,方便了对多天数据的探索和注释,并演示了它在生成活动注释中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ActiSight: Wearer Foreground Extraction Using a Practical RGB-Thermal Wearable. Finding Your Way Back: Comparing Path Odometry Algorithms for Assisted Return. Signaligner Pro: A Tool to Explore and Annotate Multi-day Raw Accelerometer Data. FamilyLog: A Mobile System for Monitoring Family Mealtime Activities. Using Passive Sensing to Estimate Relative Energy Expenditure for Eldercare Monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1