ActiSight: Wearer Foreground Extraction Using a Practical RGB-Thermal Wearable.

Rawan Alharbi, Sougata Sen, Ada Ng, Nabil Alshurafa, Josiah Hester
{"title":"ActiSight: Wearer Foreground Extraction Using a Practical RGB-Thermal Wearable.","authors":"Rawan Alharbi,&nbsp;Sougata Sen,&nbsp;Ada Ng,&nbsp;Nabil Alshurafa,&nbsp;Josiah Hester","doi":"10.1109/percom53586.2022.9762385","DOIUrl":null,"url":null,"abstract":"<p><p>Wearable cameras provide an informative view of wearer activities, context, and interactions. Video obtained from wearable cameras is useful for life-logging, human activity recognition, visual confirmation, and other tasks widely utilized in mobile computing today. Extracting foreground information related to the wearer and separating irrelevant background pixels is the fundamental operation underlying these tasks. However, current wearer foreground extraction methods that depend on image data alone are slow, energy-<b>in</b>efficient, and even inaccurate in some cases, making many tasks-like activity recognition- challenging to implement in the absence of significant computational resources. To fill this gap, we built ActiSight, a wearable RGB-Thermal video camera that uses thermal information to make wearer segmentation practical for body-worn video. Using ActiSight, we collected a total of 59 hours of video from 6 participants, capturing a wide variety of activities in a natural setting. We show that wearer foreground extracted with ActiSight achieves a high dice similarity score while significantly lowering execution time and energy cost when compared with an RGB-only approach.</p>","PeriodicalId":89224,"journal":{"name":"Proceedings of the ... IEEE International Conference on Pervasive Computing and Communications. IEEE International Conference on Pervasive Computing and Communications","volume":"2022 ","pages":"237-246"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704365/pdf/nihms-1835180.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE International Conference on Pervasive Computing and Communications. IEEE International Conference on Pervasive Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/percom53586.2022.9762385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Wearable cameras provide an informative view of wearer activities, context, and interactions. Video obtained from wearable cameras is useful for life-logging, human activity recognition, visual confirmation, and other tasks widely utilized in mobile computing today. Extracting foreground information related to the wearer and separating irrelevant background pixels is the fundamental operation underlying these tasks. However, current wearer foreground extraction methods that depend on image data alone are slow, energy-inefficient, and even inaccurate in some cases, making many tasks-like activity recognition- challenging to implement in the absence of significant computational resources. To fill this gap, we built ActiSight, a wearable RGB-Thermal video camera that uses thermal information to make wearer segmentation practical for body-worn video. Using ActiSight, we collected a total of 59 hours of video from 6 participants, capturing a wide variety of activities in a natural setting. We show that wearer foreground extracted with ActiSight achieves a high dice similarity score while significantly lowering execution time and energy cost when compared with an RGB-only approach.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ActiSight:使用实用的rgb热穿戴设备提取佩戴者前景。
可穿戴相机提供穿戴者活动、环境和互动的信息视图。从可穿戴相机获得的视频对于生活记录、人类活动识别、视觉确认和其他在当今移动计算中广泛使用的任务非常有用。提取与佩戴者相关的前景信息和分离不相关的背景像素是这些任务的基本操作。然而,目前仅依赖图像数据的佩戴者前景提取方法速度慢、能效低,在某些情况下甚至不准确,这使得许多任务(如活动识别)在缺乏大量计算资源的情况下难以实现。为了填补这一空白,我们制造了ActiSight,这是一款可穿戴的RGB-Thermal视频摄像机,它使用热信息使佩戴者对身体穿戴视频进行分割。使用ActiSight,我们从6名参与者那里收集了总共59小时的视频,捕捉了自然环境中各种各样的活动。我们表明,与仅使用rgb的方法相比,使用ActiSight提取的佩戴者前景在显著降低执行时间和能量成本的同时获得了较高的骰子相似性得分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ActiSight: Wearer Foreground Extraction Using a Practical RGB-Thermal Wearable. Finding Your Way Back: Comparing Path Odometry Algorithms for Assisted Return. Signaligner Pro: A Tool to Explore and Annotate Multi-day Raw Accelerometer Data. FamilyLog: A Mobile System for Monitoring Family Mealtime Activities. Using Passive Sensing to Estimate Relative Energy Expenditure for Eldercare Monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1