Screening Linear and Circular RNA Transcripts from Stress Granules.

IF 11.5 2区 生物学 Q1 GENETICS & HEREDITY Genomics, Proteomics & Bioinformatics Pub Date : 2023-08-01 Epub Date: 2022-01-25 DOI:10.1016/j.gpb.2022.01.003
Shuai Chen, Jinyang Zhang, Fangqing Zhao
{"title":"Screening Linear and Circular RNA Transcripts from Stress Granules.","authors":"Shuai Chen, Jinyang Zhang, Fangqing Zhao","doi":"10.1016/j.gpb.2022.01.003","DOIUrl":null,"url":null,"abstract":"<p><p>Stress granules (SGs) are cytoplasmic ribonucleoprotein assemblies formed under stress conditions and are related to various biological processes and human diseases. Previous studies have reported the regulatory role of some proteins and linear RNAs in SG assembly. However, the relationship between circular RNAs (circRNAs) and SGs has not been discovered. Here, we screened both linear RNAs and circRNAs in SGs using improved total RNA sequencing of purified SG cores in mammalian cells and identified circular transcripts specifically localized in SGs. circRNAs with higher SG-related RNA-binding protein (RBP) binding abilities are more likely to be enriched in SGs. Furthermore, some SG-enriched circRNAs are differentially expressed in hepatocellular carcinoma (HCC) and adjacent tissues. These results suggest the regulatory role of circRNAs in SG formation and provide insights into the biological function of circRNAs and SGs in HCC.</p>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787114/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gpb.2022.01.003","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Stress granules (SGs) are cytoplasmic ribonucleoprotein assemblies formed under stress conditions and are related to various biological processes and human diseases. Previous studies have reported the regulatory role of some proteins and linear RNAs in SG assembly. However, the relationship between circular RNAs (circRNAs) and SGs has not been discovered. Here, we screened both linear RNAs and circRNAs in SGs using improved total RNA sequencing of purified SG cores in mammalian cells and identified circular transcripts specifically localized in SGs. circRNAs with higher SG-related RNA-binding protein (RBP) binding abilities are more likely to be enriched in SGs. Furthermore, some SG-enriched circRNAs are differentially expressed in hepatocellular carcinoma (HCC) and adjacent tissues. These results suggest the regulatory role of circRNAs in SG formation and provide insights into the biological function of circRNAs and SGs in HCC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从应激颗粒中筛选线性和环状 RNA 转录本
应激颗粒(SGs)是在应激条件下形成的细胞质核糖核蛋白集合体,与各种生物过程和人类疾病有关。之前的研究已经报道了一些蛋白质和线性 RNA 在 SG 组装中的调控作用。然而,尚未发现环状 RNA(circRNA)与 SG 之间的关系。在这里,我们利用改进的哺乳动物细胞纯化的SG核心总RNA测序技术筛选了SG中的线性RNA和环状RNA,发现了特异性定位在SG中的环状转录本。此外,一些SG富集的circRNA在肝细胞癌(HCC)和邻近组织中的表达存在差异。这些结果表明了 circRNAs 在 SG 形成过程中的调控作用,并为深入了解 circRNAs 和 SGs 在 HCC 中的生物学功能提供了思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genomics, Proteomics & Bioinformatics
Genomics, Proteomics & Bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
14.30
自引率
4.20%
发文量
844
审稿时长
61 days
期刊介绍: Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.
期刊最新文献
Review and Evaluate the Bioinformatics Analysis Strategies of ATAC-seq and CUT&Tag Data. Identification of highly repetitive barley enhancers with long-range regulation potential via STARR-seq CpG island definition and methylation mapping of the T2T-YAO genome Pindel-TD: a tandem duplication detector based on a pattern growth approach SMARTdb: An Integrated Database for Exploring Single-cell Multi-omics Data of Reproductive Medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1